
Eur. Phys. J. D 33, 357–386 (2005)
DOI: 10.1140/epjd/e2005-00066-0 THE EUROPEAN

PHYSICAL JOURNAL D

Effective Hamiltonian approach to doubly degenerate electronic
states

I — Theory and applications to E ⊗ (b1 + b2) and related Jahn-Teller systems

F. Michelot1,a and M. Rey2
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2 Groupe de Spectrométrie Moléculaire et Atmosphérique, CNRS UMR 6089, BP 1039, 51687 Reims Cedex 2, France

Received 4 March 2005
Published online 12 May 2005 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2005

Abstract. Several problems in vibronic spectroscopy are solved within the effective Hamiltonian formalism
combined with Lie algebraic methods. We consider mainly vibronic interactions in orbital doublets for
molecules with a principal symmetry axis of order n = 4k (or n even for Dnd symmetry groups). Effective
Hamiltonian models for E ⊗ (b1 + b2), E ⊗ (bi + aj) and E ⊗ (bi + e) Jahn-Teller dynamical systems are
discussed as well as some correlations with previous studies established.

PACS. 03.65.Fd Algebraic methods – 33.20.Tp Vibrational analysis – 33.20.Wr Vibronic, rovibronic, and
rotation-electron-spin interactions

1 Introduction

Since the seminal paper by Longuet-Higgins et al. [1]
giving the energy levels of E ⊗ e Jahn-Teller (JT) sys-
tems in symmetrical molecules, many studies have been
devoted to this kind of vibronic systems, especially in
cubic symmetry. In such situations an electronic orbital
doublet is coupled to a doubly degenerate vibration (or
to a pair of phonon modes). Extensions are the multi-
mode E⊗∑

e cases and a nearby problem is the so-called
E ⊗ (b1 + b2 + · · · ) case in which two non-degenerate vi-
brations are involved. The theory of the static and dy-
namical JT effects in localized systems has been discussed
in several monographs or review articles [2–4]. More re-
cent reviews about the current status of JT theory with
extensive bibliographies can be found in [5–9].

For some times there has been a renewed interest in
the search of analytical approximate solutions since they
allow to explore areas which are not reachable through
purely numerical methods [10–13]. However the well rec-
ognized [3,4,14–16] high symmetry of the zeroth order
problem is rarely used to its full extent.

The aim of the present work is to establish a frame-
work for a unified treatment of rovibronic interactions in
doubly degenerate electronic states. This is possible if one
starts with a complete sets of electronic and rovibrational
operators built from the knowledge of the zeroth order
symmetry algebras. The space of states span well defined
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irreducible representations (irreps) of these algebras and
all the necessary matrix elements are obtained through
standard methods. Symmetry adaptation in the molecu-
lar point group G can be made through various methods
and heavily relies on physical assumptions concerning the
dominant interactions breaking the zeroth order symme-
try. As an aside it appears that the various forms of vi-
bronic Hamiltonians given in the literature describing lin-
ear couplings in such systems are simply related through
a change of the orientation for the E irrep of G.

The general features of our formalism are presented in
the first part of this paper. Our assumptions are clearly
specified and the restriction to doubly degenerate elec-
tronic states is developed next. The preliminary results
obtained in a previous work [17] lead us to a natural di-
vision in two main cases determined by the reduction of
the symmetrized product [E × E].

The following sections deal with electronic states for
which [E × E] is of type A1 + B1 + B2. Several zeroth-
order effective Hamiltonian models are considered for
E ⊗ (b1 + b2), E ⊗ (bi + aj) and E ⊗ (bi + e) JT systems.
In each case exact eigenvalues and symmetry adapted
vibronic eigenstates are obtained. The determination of
these symmetry adapted states is important for the inclu-
sion of higher order interactions or intensity calculations.
Whenever possible the relation between our approach and
previous studies is made. In two cases the exact uni-
tary transformation between the untransformed vibronic
Hamiltonian and the effective associated model is found.
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2 Working assumptions

In what follows we restrict ourselves to semi-rigid non lin-
ear molecular systems in a degenerate electronic state to
which is associated an irrep Γe of the molecular point sym-
metry group G. We assume that in first approximation the
Hamiltonian which includes electronic, vibrational and ro-
tational degrees of freedom is invariant with respect to
transformations of a certain Lie group or more precisely
that it admits a certain Lie symmetry algebra A. We fur-
ther assume that A may be taken as as a direct sum
of Lie algebras associated with each degrees of freedom:
A = Ae ⊕ Av ⊕ Ar. This is probably not the most gen-
eral solution but it reflects the orders of magnitude for
the various interactions commonly found for the consid-
ered molecular systems. When we go beyond the zeroth
order the preceding high symmetry is usually broken and
we have a chain

Ae ⊕Av ⊕Ar ⊃ · · · ⊃ G, (1)

where the dots · · · mean that in general we have sev-
eral possibilities. A must have one (or several) irrep
Λe×Λv×Λr which generate the space of states and whose
subduction in the chain (1) gives appropriate symmetry
adapted states.

At this point, reminding that all classical Lie algebras
admit bosonic (or fermionic) realizations, the construction
of all possible operators acting within Λe×Λv×Λr can be
made. This is not necessarily an easy step especially if one
wants to build operators which are symmetry adapted in
the whole chain. Rovibronic states and operators can be
written in a general manner

[[{γe}Ψ (Γe) ×{γv} Ψ (Γv)](Γev) ×{γr} Ψ (Γr)]{γ}(Γevr) ≡
|{γe}Γe, {γv}Γv, Γev, {γr}Γr; {γ}Γevr〉

≡ |{γ}Ψ (Γevr)〉, (2)

{κ}O(Cevr) = [[{κe}E(Ce) ×{κv} V (Cv)](Cev)

×{κr} R(Cr)]{κ}(Cevr), (3)

where the indices γi and κi represent the additional labels
needed to fully specify states and operators. In equation
(3) Cevr is the scalar representation Γ0 of G for an Hamil-
tonian operator or one of the appropriate irrep of G for
transition moments. Besides we assume that these opera-
tors satisfy the usual properties of hermiticity and invari-
ance upon time reversal. All the necessary matrix elements
are calculated by standard techniques. The Wigner-Eckart
theorem gives

〈{γ′}Ψ (Γ ′
evr)

σ′ |{κ}O(Cevr)
θ |{γ}Ψ (Γevr)

σ 〉 =

[Γ ′
evr ]

− 1
2 F

θ σ (Γ ′
evr)∗

(Cevr Γevr) σ′

× ({γ′}Γ ′
evr||{κ}O(Cevr)||{γ}Γevr), (4)

where the F coefficients are Clebsch-Gordan coefficients
(CGC) for G and the reduced matrix elements given by

({γ′}Γ ′
evr||{κ}O(Cevr)||{γ}Γevr) =

([Γ ′
evr ][Γevr ][Cevr ][Γ ′

ev][Γev][Cev ])
1
2






Cev Γev Γ ′
ev

Cr Γr Γ ′
r

Cevr Γevr Γ ′
evr






×





Ce Γe Γ ′
e

Cv Γv Γ ′
v

Cev Γev Γ ′
ev





({γ′

e}Γ ′
e||{κe}E(Ce)||{γe}Γe)

× ({γ′
v}Γ ′

v||{κv}V (Cv)||{γv}Γv)

× ({γ′
r}Γ ′

r||{κr}R(Cr)||{γr}Γr), (5)

where {...} are 9 − C symbols of G. At this point a few
remarks are in order:

(i) in the preceding equations (4, 5) the Wigner-Eckart
theorem has been applied at the G level; this is not
always the best option but it simplifies the presenta-
tion of the method. We also assume that all products
of irrep of G involved are multiplicity free, as it will
be the case in this paper. Non multiplicity free cases
can be handled along the same lines with the addition
of multiplicity indices appropriately;

(ii) the coupling schemes in equations (2, 3) assume a
preponderant interaction between electronic and vi-
brational degrees of freedom. Other situations could
be considered and treated either directly through a
different coupling scheme or obtained from this one
through standard recoupling techniques;

(iii) if the algebras Ai and irreps Λi have been appropri-
ately chosen with a formal expansion of the form

H =
∑

κi,Ci

t
{κi}
{Ci} [[{κe}E(Ce) ×{κv} V (Cv)](Cev)

×{κr} R(Cr)]{κ}(Γ0), (6)

one must be able to represent any “untransformed”
Hamiltonian as well as any effective one. This point
will be illustrated in the following for the specific sys-
tems under study.

3 Further restrictions

For all molecular systems the treatment of rotational de-
grees of freedom is rather well established, even if different
approaches are used [18,19]. The simplest algebraic chains

O(3)r ⊃ O(2)r or O(3)r ⊃ G

jτ m jτ nrCrσr

are commonly used and allow to get a set of rotational
operators

RΩ(Kg)
q or RΩ(Kg)

pr
= RΩ(Kg,nrCr)

σr
,
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where Ω is the degree with respect to the so(3) genera-
tors. Compact dynamical algebras and their bosonic re-
alizations have also been proposed [20]; they allow more
general operators to be built.

In this paper we will restrict to vibronic interactions,
which amounts to take R(Cr) as the identity operator in
equation (2). We thus write vibronic states and opera-
tors as

[{γe}Ψ (Γe) ×{γv} Ψ (Γv)]{γev}(Γev) ≡
|{γe}Γe, {γv}Γv; {γev}Γev〉 ≡ {γev}Ψ (Γev), (7)

{κ}O(Cev) = [[{κe}E(Ce) ×{κv} V (Cv)]{κev}(Cev), (8)

and equations (4, 5) reduce to

〈{γ′
ev}Ψ (Γ ′

ev)
σ′

ev
|{κev}O(Cev)

θ |{γev}Ψ (Γev)
σev

〉 =

[Γ ′
ev ]−

1
2 F

θ σev (Γ ′
ev)∗

(Cev Γev) σ′
ev

× ({γ′
ev}Γ ′

ev||{κev}O(Cev)||{γev}Γev), (9)

with for the reduced matrix elements

({γ′
ev}Γ ′

ev||{κev}O(Cev)||{γev}Γev) =

×





Ce Γe Γ ′
e

Cv Γv Γ ′
v

Cev Γev Γ ′
ev





({γ′

e}Γ ′
e||{κe}E(Ce)||{γe}Γe)

× ([Γ ′
ev ][Γev][Cev])

1
2 ({γ′

v}Γ ′
v||{κv}V (Cv)||{γv}Γv) . (10)

In the following section we specify the electronic operators
and states adapted to cases where Γe is of the E type and
the vibrational operators we will use.

4 The case of electronic states with E
symmetry type

As we shall consider only electronic states of type E
(and G′ in part II) it is better to refine the classification
of groups introduced in [17,21]. In fact if we denote Er

(or Erα) the irrep of G spanned by the electronic states of
type E it follows that we have fundamentally two cases
according as the reduction of the symmetrized square
[Er × Er] = [Er]2 = Γ0 + Γ contains either an E type ir-
rep or two one dimensional B1 and B2 type irreps. This is
summarized in Table 1 for groups in G(I) = Cnv, Dn, Dnd

(n even), Td, O. For groups in G(II) we have the rules:

• D2p+1h = D2p+1 × Cs: for Er = E′
r

or Er = E′′
r add a ′ to Γ in column for D2p+1,

• D2ph = D2p × Ci: for Er = Erg

or Er = Eru add a g to Γ in column for D2p,
• D2p+1d = D2p+1 × Ci: for Er = Erg

or Er = Eru add a g to Γ in column for D2p+1,
• Oh = O × Ci: for Er = Eg

or Er = Eu add a g to Γ in column for O.

(11)

Table 1. Γ ⊂ [Er]
2 for groups in G(I).

Γ D2p+1 D2p D2pd Case

C2p+1v C2pv

Td, O

B1 + B2 r = p
2

r = p (i)

E2r r ≤ p
2

r ≤ p−1
2

p odd r < p (ii)

r < p
2

p even

En−2r r > p
2

r > p−1
2

p odd (iii)

r > p
2

p even

E2n−2r r > p (iii)

We have thus two main cases according as Γ is of type B1+
B2 or E. This latter case also includes cubic groups for
which there is only one E type irrep (two in Oh differing
in parity only) and which are the only ones which admit G′
electronic states also1.

4.1 Electronic operators and states

For an orbital doublet or E term it is well-known that
an u(2) algebra is appropriate [4]. Whatever G we shall
denote Er the irrep spanned by the electronic states. So,
from the results of [17] the electronic space of states is
a carrier space for the irrep [10] of u(2)e which subduces
to Er in G with different possible bases mainly determined
by the orientation chosen for the E type irreps of G.

A complete set of electronic operators writes [1−1]E(k)
pe .

In fact as [1−1]E(0) = (N1 + N2)/
√

2 reduces to the linear
invariant which is a constant within [10] we are left with
[1−1]E(1) = [1−1]E(1). The indices pe depend upon the
algebraic chain used:

u(2)e ⊃ su(2)e ⊃ so(2)e

pe = me me = 0,±1
u(2)e ⊃ su∗(2)e ⊃ G

pe = 	eCeσe

{
	e = 0 Ceσe = A2

	e = 2 Ceσe = Γσe

(12)

where the Γ values are those in table 1 and equation (11);
A2 is A′

2 or A2g for groups in G(II). Depending upon
the orientation of the irreps of type E the index σe is
denoted σ, σ̄ or ¯̄σ for orientations I, II and III, respec-
tively [17].

For each cases the expressions of the symmetry
adapted electronic operators in terms of the su(2)e gener-
ators have been given in Table II of [17] and their matrix
elements calculated in the various bases:

u(2)e ⊃ su(2)e ⊃ so(2)e

[10] ↓ 1
2 ↓ me

u(2)e ⊃ su∗(2)e ⊃ G
[10] ↓ 1

2 ↓ 1Erσe

(13)

with σe = σ or σ̄, ¯̄σ.
1 Icosahedral molecules have G′ electronic states but no E

type irrep and as such no E electronic states.
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4.2 Vibrational operators and states

An arbitrary vibrational operator involving several modes
s1, s2, · · · , sk with symmetry Cs1 , Cs2 , · · · , Csk

may be
denoted:

{κv}
{s} V (Cv) = [ {κ1}

s1
V (C1) × {κ2}

s2
V (C2) × · · · {κk}

sk
V (Ck)](Cv).

(14)
As icosahedral molecules are not considered here1 we can
restrict to oscillators with dimension at most equal to
three. We also note that molecules with symmetry other
than that of cubic or icosahedral groups have at most two
dimensional vibrational modes. We give in Appendix A
the various forms of the vibrational operators we use.
The general expression (14) is restricted there to one and
two mode operators which should be sufficient in most ap-
plications for the systems under consideration. In any case
higher order interaction terms could be built along the
same line. With this assumption vibrational basis states
will mainly be of one of the two basic forms:

{γvs}Ψ (Γv)
σv

= |{γvs}Γvσv〉, or

[ {γvs1
}Ψ (Γvs1

) ×{γvs2
} Ψ (Γvs2

)](Γv)
σv

= |{γvs1
γvs2

}Γvσv〉,

where the γvs indices depend also upon the vibrational
algebraic chain used.

5 Formal vibronic Hamiltonian

The most general formal vibronic Hamiltonian may first
be written as a linear combination with real parameters
of Hermitian and time reversal invariant operators:

HF =
∑

all indices

{s}t{κeκv} [[1−1]E(ke,	eCe) × {κv}
{s} V (Cv)](Γ0).

The {s} = s1, s2 · · · set may include arbitrary vibrational
operators built from the elementary ones associated with
any mode si appearing in the full vibrational representa-
tion. Taking into account that electronic operators with
ke = 0 are proportional to the identity operator HF may
also be written

HF = Ie

∑

{s},{κv}
{s}tΓ0{κv} {κv}

{s} V (Γ0)

+
∑

all indices

{s}t{κeκv} [[1−1]E(1e,	eCe) × {κv}
{s} V (Cv)](Γ0),

(15)

where the first term represents the purely vibrational
Hamiltonian. For practical purposes the previous expan-
sion has to be specialized. Basically we define two cate-
gories:

(a) the expansion is used to represent what we call the
untransformed vibronic Hamiltonian (although it is
already an effective one) for the considered degenerate

electronic state. Its expression is commonly written in
the form

H(r, Q) = T (Q) + U(r, Q)

= T (Q) + H(r) + V (r, Q0) +
∑

s,C

[sV (C) × sQ
(C)](Γ0)

+
1
2

∑

si,Ci,C

[s1,s2W
C1C2(C) × [s1Q

(C1)

× s2Q
(C2)](C)](Γ0) + · · · (16)

With respect to the equivalent expression given
in [4] we only slightly change the notations; in par-
ticular we allow for non trivial CGC. The sV

(C)

and s1,s2W
C1C2(C) operators are related to the first

and second derivatives with respect to normal coor-
dinates sQ

(C) of the potential. The projection of (16)
onto the considered electronic state determines the
vibronic Hamiltonian matrix

PeHPe = H〈Pe〉

= Ĥ0 +
∑

s,C

sVC [Ĉ(C) × sQ
(C)](Γ0)

+
1
2

∑

si,Ci,C

s1,s2WC(C1 × C2)

× [[Ĉ(C) × [s1Q
(C1) × s2Q

(C2)](C)](Γ0) + · · · (17)

Usually only terms which are at most quadratic in the
normal coordinates are retained;

(b) the expansion (15) is to represent an effective Hamil-
tonian obtained from the untransformed one through
a (usually unknown) unitary transformation. Thus
it is mainly determined by the polyad scheme ap-
propriate to the particular molecular system under
study [19,22,23]. In a general way, if we denote by Pk

the projector onto an arbitrary vibrational subspace
Ωk of the complete vibrational Hilbert space Hv

PkHF Pk = H̃〈Pk〉,

contains only vibrational operators acting within the
set of levels contained in Ωk; if the set of all vibra-
tional operators is appropriately chosen the effective
Hamiltonian for a given vibronic polyad Ne is then
given by

H̃〈PN 〉 =
Ne∑

k=1

H̃
〈Pk〉
{Pk},

where the summation is over the lowest polyads, in-
cluding the ground state.

In the following sections the preceding ideas are applied
to specific E electronic states.

6 The E ⊗ (b1 + b2 + · · · ) case

6.1 General expansions

This corresponds to case (i) of Section 4 for which [Er]2 =
A1 + B1 + B2 with r = n/4 for groups in G(I) except
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for Dnd groups with n even for which it is r = n/2. For
other groups, [Erα]2 = A1α2 + B1α2 + B2α2 with α2 = ′
or g. Since in general, parities can easily be added they
will be omitted in the following except in a few cases; in
particular for groups in G(II) all Hamiltonian terms are
of symmetry ′ or g. The expansion (15) writes then

HF = Ie

∑

{s}{κv}
{s}tA1{κv} {κv}

{s} V
(A1)
+

+
∑

{s}{κv}
{s}tA2{κv} [[1−1]E(1,0A2) × {κv}

{s} V
(A2)
− ](A1)

+
∑

t=1,2

∑

{s}{κv}
{s}tBt{κv} [[1−1]E(1,2Bt) × {κv}

{s} V
(Bt)
+ ](A1),

(18)

where + (−) stands for time-reversal invariant (non in-
variant) operators. As all CGC reduce to unity (18) may
also be written

HF = Ie

∑

{s}{κv}
{s}tA1{κv} {κv}

{s} V
(A1)
+

+ [1−1]E(1,0A2)
∑

{s}{κv}
{s}tA2{κv} {κv}

{s} V
(A2)
−

+
∑

t=1,2

[1−1]E(1,2Bt)
∑

{s}{κv}
{s}tBt{κv} {κv}

{s} V
(Bt)
+ . (19)

To facilitate practical applications and further compar-
isons with previous approaches we detail below the pre-
ceding expansion taking into account that molecules en-
tering this case have vibrational modes which are at most
doubly degenerate. Also we keep only one and two modes
vibrational operators. Setting

HF = Hvib + H(A2) + H(Bt) t = 1, 2,

we have with the notations of Appendix A

Hvib = Ie

{
∑

s

{

st
CC(A1)
n1n2

0
sV

CC(A1)
n1n2

+ st
j	(A1)
m1m2

[m1 −m2]
s V(j,	A1)

}

+
∑

s�=s′

{

ss′t
{Ci}{C′

i}(A1)

nin′
i

0
ss′V

{Ci}{C′
i}(A1)

{ni}{n′
i}

+ ss′t
{Ciji	i}{C′

ij
′
i	

′
i}(A1)

nimi

0
ss′V

{Ciji	i}{C′
ij

′
i	

′
i}(A1)

n1n2,m1m2

+ ss′t
{ji	iCi}{j′i	

′
iC

′
i}(A1)

nimi

0
ss′V

{ji	iCi}{j′i	
′
iC

′
i}(A1)

n1n2,m1m2

}
+ · · ·

}

,

(20)

H(A2) = [1−1]E(1,0A2)

{
∑

s

{

st
C1C2(A2)
n1n2

1
sV

C1C2(A2)
n1n2

+ st
j	(A2)
m1m2

[m1 −m2]
s V(j,	A2)

}

+
∑

s�=s′

{

ss′t
{Ci}{C′

i}(A2)
nin′

i

1
ss′V

{Ci}{C′
i}(A2)

{ni}{n′
i}

+ ss′t
{Ciji	i}{C′

ij
′
i	

′
i}(A2)

nimi

1
ss′V

{Ciji	i}{C′
ij

′
i	

′
i}(A2)

n1n2,m1m2

+ ss′t
{ji	iCi}{j′i	

′
iC

′
i}(A2)

nimi

1
ss′V

{ji	iCi}{j′i	
′
iC

′
i}(A2)

n1n2,m1m2

}
+ · · ·

}

,

(21)

H(Bt) = [1−1]E(1,2Bt)

{
∑

s

{

st
CC(Bt)
n1n2

0
sV

CC(Bt)
n1n2

+ st
j	(Bt)
m1m2

[m1 −m2]
s V(j,	Bt)

}

+
∑

s�=s′

{

ss′t
{Ci}{C′

i}(Bt)

nin′
i

0
ss′V

{Ci}{C′
i}(Bt)

{ni}{n′
i}

+ ss′ t
{Ciji	i}{C′

ij
′
i	

′
i}(Bt)

nimi

0
ss′V

{Ciji	i}{C′
ij

′
i	

′
i}(Bt)

n1n2,m1m2

+ ss′ t
{ji	iCi}{j′i	

′
iC

′
i}(Bt)

nimi

0
ss′V

{ji	iCi}{j′i	
′
iC

′
i}(Bt)

n1n2,m1m2

}
+ · · ·

}

.

(22)

From now on the electronic operators will be simply de-
noted E(1,	eCe).

6.2 Representing the untransformed Hamiltonian

In such a case it is better to take vibrational opera-
tors defined in terms of coordinates as in equations (A.1)
and (A.6); also we restrict to terms which are at most
quadratic in the coordinates. From equations (20–22) we
then obtain

H = Ie

∑

s

{

�ωs

(

Ns +
gs

2

)

+ st
B1E(1,2B1)

sQ
(B1) + st

B2E(1,2B2)
sQ

(B2)

}

+
∑

t,i,j

∑

s�=s′
ss′tAjBi(Bt)E(1,2Bt)(sQ

(Aj) × s′Q(Bi))(Bt)

+
∑

t

{
∑

s,s′
ss′t

E n
4

E n
4

(Bt)E(1,2Bt)(sQ
(E n

4
) × s′Q

(E n
4

))(Bt)

+
∑

s�=s′
ss′ t

EkE n
2 −k(Bt)E(1,2Bt)(sQ

(Ek) × s′Q
(E n

2 −k))(Bt)

}

,

(23)

with Aj × Bi = Bt (t = 1, 2). For Dnd (n even) groups
the substitution n → 2n must be made in the last two
terms. For groups in G(II)

′,′′ (or g, u) indices must be
added in such a way that the global vibrational operator
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be of type ′ (or g). We also note that the last term in (23)
require n ≥ 8 (n ≥ 4) in Dn type groups (Dnd).

Standard treatments of vibronic interactions in such
cases can be recovered by selecting appropriate terms in
the Hamiltonian (23); often the last two terms, which do
not involve the active coordinates, are neglected. As an
illustration we give below for some cases how well-known
results can be recovered and eventually extended.

E ⊗ (b1 + b2) case: denoting s1 and s2 the active coor-
dinates we obtain

H = Ie

{
∑

i=1,2

�ωsi

(

Nsi +
1
2

)

+
∑

s�=s1,s2

�ωs

(

Ns +
1
2

)}

+ s1t
B1E(1,2B1)

s1Q
(B1) + s2t

B2E(1,2B2)
s2Q

(B2)

+
∑

s

{

ss1t
A1B1(B1)E(1,2B1)(sQ

(A1) × s1Q
(B1))(B1)

+ ss2t
A1B2(B2)E(1,2B2)(sQ

(A1) × s2Q
(B2))(B2)

}

+
∑

s

{

ss2t
A2B2(B1)E(1,2B1)(sQ

(A2) × s2Q
(B2))(B1)

+ ss1t
A2B1(B2)E(1,2B2)(sQ

(A2) × s1Q
(B1))(B2)

}
+ · · · ,

(24)

where the summation over s involves only modes with
significant coupling with b1 and b2 vibrational modes. The
multimode E ⊗ (nb1 + n′b2) problem is obtained with a
summation over s1 and (or) s2 indices.

For the E ⊗ b1 case (resp. E ⊗ b2) only terms with
indices s1 (resp. s2) are retained. Likewise for a E ⊗ (b1 +
b1+· · · ) (resp. E⊗(b2+b2+· · · )) case one would introduces
a s1 (resp. s2) summation.

In the preceding equations (23, 24) we could replace
the electronic operators E(1,2Bi) by their expression in
terms of the components of the pseudo-spin Sα. How-
ever the relations between our parameters and conven-
tional ones can only be made through the vibronic ma-
trix. The latter is most easily obtained with the results
of reference [17]. We only give its expression for the gen-
eral expansion (23), those associated with particular cases
being easily deduced.

• Vibronic matrix in orientation I. The projector onto
the electronic subspace Er writes

Pe =
∑

σ

∣
∣
∣
∣[1 0]

1
2
1Erσ

〉〉〈〈

[1 0]
1
2
1Erσ

∣
∣
∣
∣ .

For the quadratic terms in (23) we set

(2)V (Bt) =
∑

i,j

∑

s�=s′
ss′tAjBi(Bt)(sQ

(Aj) × s′Q(Bi))(Bt)

+
∑

s,s′
ss′ t

E n
4

E n
4

(Bt)(sQ
(E n

4
) × s′Q

(E n
4

))(Bt)

+
∑

s�=s′
ss′t

EkE n
2 −k(Bt)(sQ

(Ek) × s′Q
(E n

2 −k))(Bt),

then the vibronic matrix is given in terms of Pauli matri-
ces σ̂α by

Ĥ =
∑

s

{

�ωsσ̂0

(
Ns +

gs

2

)

+
1
2

σ̂z st
B1

sQ
(B1) − 1

2
σ̂x st

B2
sQ

(B2)

}

+
1
2

σ̂z
(2)V (B1) − 1

2
σ̂x

(2)V (B2) + · · · (25)

expression which shows that this orientation is suitable
when the vibronic coupling with the b2 vibration is small
or in a E ⊗ (b1 + b1 + · · · ) multimode problem. The
terms in the first and second line are those commonly
found [4,24,25] for such systems even with the equal cou-
pling approximation.

• Vibronic matrix in orientation II. For the same sub-
space we have now

Pe =
∑

σ̄

∣
∣
∣
∣[1 0]

1
2
1Erσ̄

〉〉〈〈

[1 0]
1
2
1Erσ̄

∣
∣
∣
∣ ,

and the vibronic matrix reads

Ĥ =
∑

s

{

�ωsσ̂0

(
Ns +

gs

2

)

−1
2

σ̂x st
B1

sQ
(B1) +

1
2

σ̂y st
B2

sQ
(B2)

}

−1
2

σ̂x
(2)V (B1) +

1
2

σ̂y
(2)V (B2) + · · · (26)

The terms on the first two lines of equation (26) are in a
form similar to that used when discussing adiabatic po-
tentials [4] and in the equal coupling case [26,27].

• Vibronic matrix in orientation III. In this case the
projector onto the electronic subspace Er is:

Pe =
∑

¯̄σ

∣
∣
∣
∣[1 0]

1
2
1Er ¯̄σ

〉〉〈〈

[1 0]
1
2
1Er ¯̄σ

∣
∣
∣
∣ ,

and the vibronic matrix given by

Ĥ =
∑

s

{

�ωsσ̂0

(

Ns +
gs

2

)

+
1
2

σ̂x st
B1

sQ
(B1) +

1
2

σ̂z st
B2

sQ
(B2)

}

+
1
2

σ̂x
(2)V (B1) +

1
2

σ̂z
(2)V (B2) + · · · (27)

This case is similar to that in equation (25) in the sense
that this orientation is appropriate when the vibronic cou-
pling with the b1 vibration is small or for a multimode
E ⊗ (b2 + b2 + · · · ) problem.
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Relations with usual parameters used in the literature
can be summarized by
〈

eΨ
(Er)
α′

∣
∣
∣
∣

∂V

∂sQ(Bt)

∣
∣
∣
∣

eΨ (Er)
α

〉

=

st
Bt

1√
2

(

−i

√
3
2

)

F
2Bt 1Erα ([1 0]1/2)∗

([1 − 1]1 [1 0]1/2) 1Erα
′ ,

(28)

where the coefficient −i
√

3/2 is the reduced matrix el-
ement ([1 0]12 || [1−1]E(1)||[1 0]12 ) of our electronic opera-
tors and r = n/4 or n/2 depending on the group in-
volved. The F symbols, which are CGC for the chain
ue(2) ⊃ su∗

e(2) ⊃ G have been defined in [17].
Likewise for quadratic coupling constants we have

1
2

〈
eΨ

(Er)
α′

∣
∣
∣

∂2V

∂sQ
(C1)
α1 ∂s′Q

(C2)
α2

∣
∣
∣ eΨ (Er)

α

〉
=

ss′tC1C2(Bt)
1√
2

(

− i

√
3
2

)

F
α1 α2 (Bt)
(C1 C2)

× F
2Bt 1Erα ([1 0]1/2)∗

([1 − 1]1 [1 0]1/2) 1Erα
′ , (29)

where the indices α1, α2 can be omitted when C1 and C2

are one dimensional. The first F symbols in (29) are CGC
for the group G. Up to now these symbols were not ex-
plicitly needed since all computations have been made in
the full chain starting from u(2). If they are introduced
through

F
2Bt 1Erα ([1 0]1/2)

([1 − 1]1 [1 0]1/2) 1Erα
′ =

K
2Bt 1Er ([1 0]1/2)

([1 − 1]1 [1 0]1/2) 1Er
F

α (Er)
(Bt Er) α′ ,

equations (28, 29) may be given a somewhat more familiar
form:
〈

eΨ
(Er)
α′

∣
∣
∣

∂V

∂sQ(Bt)

∣
∣
∣ eΨ (Er)

α

〉
=

st
Bt c(Bt, Er)F

α (Er)∗
(Bt Er) α′ , (30)

1
2

〈
eΨ

(Er)
α′

∣
∣
∣

∂2V

∂sQ
(C1)
α1 ∂s′Q

(C2)
α2

∣
∣
∣ eΨ (Er)

α

〉
=

ss′tC1C2(Bt) c(Bt, Er)F
α1 α2 (Bt)
(C1 C2)

F
α (Er)∗

(Bt Er) α′ ,

(31)

where we set

K
2Bi 1Er ([1 0]1/2)∗

([1 − 1]1 [1 0]1/2) 1Er

(

−i

√
3

2

)

= c(Bi, Er),

the K coefficients being isoscalar factors for the chain
ue(2) ⊃ su∗

e(2) ⊃ G and as such independent of the ori-
entation chosen for the irreps of G.

7 Examples with effective Hamiltonians

The usual approach to the dynamical Jahn-Teller effect is
to set up the Hamiltonian matrix in the basis of the vi-
brational modes involved with a truncation of the space of
states to a sufficiently high value of the vibrational quan-
tum numbers. This works well in the single mode case and
as far as the rotational degrees of freedom are not taken
into account. We shall not illustrate this approach, since
the computation of matrix elements of the Hamiltonians
in section 6 is rather straightforward (Eqs. (9, 10)) in the
coupled bases

|[1 0]Er, {γvs}Γv; Γevσev〉

for a one mode case or

|[1 0]Er, {γvs}Γ1, {γvs′ }Γ2; Γv; Γevσev〉,

when two modes are involved.
Rather we choose to illustrate the effective Hamilto-

nian approach, already used in spherical tops [19,22,23]
and in some symmetric and asymmetric molecules [28,29],
which allows to deal in most cases with matrices of rea-
sonable size. However a meaningful model can only be
proposed if the vibronic polyad scheme, which should dif-
fer from the usually known vibrational polyad scheme, for
the molecule under study is approximately known. Thus
there is no general solution and the cases we consider rely
on definite choices. In fact, so as to establish comparisons,
among the examples developed below some have already
been treated by conventional techniques, mainly of the
perturbative type and usually only eigenvalues have been
given to first or second order.

We consider two modes in the full vibrational repre-
sentation with frequencies ωs and ωs′ for which quadratic
vibronic coupling terms are allowed (Eq. (23)). Also, we
may expect a significant interaction if these modes are
coupled through cubic terms in the potential energy. If
we ask moreover that the latter involve the active coordi-
nate, then simple symmetry arguments reveal that there
are only two possibilities

(
q(Bi)
s

)2

q
(A1)
s′ , q(Bi)

s

(

q
(E n

4 )

s′

)2

with the substitution n/4 → n/2 for Dnd groups. The
effective Hamiltonian expansion is obtained from the re-
sults in Appendix A retaining only those vibrational op-
erators which have non zero matrix elements within a
polyad which we assume to be characterized by the quan-
tum number N = vs + v′s′ . We consider separately below
various JT systems meeting these requirements and dis-
cuss the properties of their zeroth order spectrum.
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7.1 E ⊗ (b1 + b2) case

The most general effective vibronic Hamiltonian is of the
form

H̃vibr = Ie

{
∑

n

s1 t̃
C1C1(A1)
{n}{n}

0
s1

V
C1C1(A1)
{n}{n}

+ s2 t̃
C2C2(A1)
{n}{n}

0
s2

V
C2C2(A1)
{n}{n}

+
∑

{ni,n′
i}

s1s2 t̃
C1C2 C′

1C′
2(A1)

{n1n2}{n′
1n′

2}
0

s1s2
V

C1C2 C′
1C′

2(A1)

{n1n2}{n′
1n′

2}

}

+ E(1,0A2)
∑

{ni,n′
i}

s1s2 t̃
C1C2 C′

1C′
2(A2)

{n1n2}{n′
1n′

2}
1

s1s2
V

C1C2 C′
1C′

2(A2)

{n1n2}{n′
1n′

2} ,

(32)

with C1(C2) = B1(B2) for n1(n2) odd and C1(C2) = A1

for n1(n2) even. Also we have the condition n1 + n2 =
n′

1 +n′
2 and the matrix elements are non-zero only if n′

1 +
n′

2 ≤ N . In Appendix B equation (32) is detailed for the
cases N ≤ 2.

For the computation of matrix elements one usually
resorts to the mathematically convenient coupled basis of
the general form (7) and given for the special case consid-
ered here by

∣
∣
∣
∣[1 0]

1
2
1Er, (vΓ1, N − vΓ2)Γv; Erσev

〉

= |{γ}Ψ (Er)
σev

〉,
(33)

where we took into account that in all cases the overall
symmetry of states is Er since A1 × Er = Bi × Er = Er.
However, as we will show, this is not necessarily the in-
teresting basis for the prediction of zeroth order spectrum
properties.

We can already note that, since the electronic oper-
ator E(1,0A2) is proportional to the z-component of the
pseudo-spin Sz [17], symmetry adapted electronic states
in orientation II are appropriate. In order to obtain the
dominant features the Hamiltonian expansion given in Ap-
pendix B can be simplified. We take the following approx-
imate expression

H̃
(0)
vibr = t̃

A1A1(A1)
{0}{0} Iv + s1 t̃

B1B1(A1)
{1}{1}

0
s1

V
B1B1(A1)
{1}{1}

+ s2 t̃
B2B2(A1)
{1}{1}

0
s2

V
B2B2(A1)
{1}{1}

+ E(1,0A2)
s1s2 t̃

B1A1 A1B2(A2)
{10}{01}

1
s1s2

V
B1A1 A1B2(A2)
{10}{01} , (34)

which amounts to consider as predominant the terms
which have the lowest degree in vibrational variables.
Equation (34) may also be written simplifying the nota-
tions for the effective parameters

H̃
(0)
vibr = �λ̃0 + �ω̃s1

(

N1 +
1
2

)

+ �ω̃s2

(

N2 +
1
2

)

+ �λ̃Szi(s2a
+(B2)

s1a
(B1) − s1a

+(B1)
s2a

(B2)). (35)

Using the coupled basis (33) we obtain the matrix ele-
ments within the polyad N

〈
{γ′}Ψ (Er)

σ′
ev
|H̃(0)

vibr|{γ}Ψ (Er)
σev

〉
=

δσev ,σ′
ev

[[

�λ̃0+�ω̃s1

(

v+
1
2

)

+�ω̃s2

(

N−v+
1
2

)]

δv′,v

+ �λ̃
(−1)Γv

√
2

{
Γ ′

v′ Er Er

Er Γv A2

}





B1 Γ1 Γ ′
1

B2 Γ2 Γ ′
2

A2 Γv Γ ′
v′






× {[(v + 1)(N − v)]
1
2 δv′,v+1 − [v(N − v + 1)]

1
2 δv′,v−1}

]

,

(36)

and nothing special appears apart from the usual selection
rules contained in the recoupling coefficients and σev =
σ′

ev which implies that one only needs to diagonalize one
matrix of dimension N + 1.

If instead we use the unsymmetrized basis
∣
∣
∣
∣[1 0]

1
2
1Erσ̄

〉〉

|vΓ1, N − vΓ2; Γv〉,

and perform first a projection onto the considered elec-
tronic state we obtain

〈
H̃

(0)
vibr

〉

Er

= �λ̃0 + �ω̃s1

(

N1 +
1
2

)

+ �ω̃s2

(

N2 +
1
2

)

− �
λ̃

2
(−1)σ̄+1i(s2a

+(B2)
s1a

(B1) − s1a
+(B1)

s2a
(B2)),

where we took into account the important property, es-
tablished in [17]:
〈〈

[1 0]
1
2
1Erσ̄

′
∣
∣
∣
∣E

(1,0A2)

∣
∣
∣
∣[1 0]

1
2
1Erσ̄

〉〉

=
(−1)σ̄+1

2
δσ̄,σ̄′ ,

if orientation II is used. The eigenvalues are the same for
both values σ̄ = 1̄, 2̄ since we have upon time reversal

K〈H̃(0)
vibr〉ErK−1(σ̄ = 1̄) = 〈H̃(0)

vibr〉Er (σ̄ = 2̄),

and within this orientation

K
∣
∣
∣
∣[1 0]

1
2
1Erσ̄

〉〉

|vΓ1, N − vΓ2; Γv〉 =
∣
∣
∣
∣[1 0]

1
2
1Er − σ̄

〉〉

|vΓ1, N − vΓ2; Γv〉,

with −1̄ = 2̄ and conversely. This results will also natu-
rally appear in the following.

7.1.1 Eigenvalues and symmetry adapted states

We give a rather detailed account of the method we use
to solve the eigenequation for the present problem since
other vibronic cases to be considered in the next sections
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appeal to similar techniques. Also we wish to establish
precisely the connection with previous results [26,27] for
the same E ⊗ (b1 + b2) case. First we simplify temporar-
ily the notation setting s2a

(B2) = a2 and s1a
(B1) = a1.

Equation (35) becomes

H̃
(0)
vibr = �λ̃0 + �ω̃s1

(

N1 +
1
2

)

+ �ω̃s2

(

N2 +
1
2

)

+ �λ̃Szi(a+
2 a1 − a+

1 a2), (37)

and appears naturally as a function of the generators of
an u(2) algebra:

J+ = J
(A2)
+ = a+

1 a2, J− = J
(A2)
− = a+

2 a1,

Jz = J (A1)
z =

1
2
(N1 − N2). (38)

With the results of [17] the polyad states can be written
as u(2) ⊃ su(2) ⊃ G covariant symmetry adapted states
(j = N/2, m = N/2 − v):

|[N 0]jm(Γv)〉〉 = (−1)j−m|j − m(Γ1), j + m(Γ2); Γv〉
= (−1)j−m[(j − m)!(j + m)!)]−

1
2 a

+(j−m)
1 a

+(j+m)
2 |0, 0〉,

(39)

and the Hamiltonian (37) writes

H̃
(0)
vibr = �λ̃0 + �

(ω̃s1 + ω̃s2)
2

(N + 1)

+ �(ω̃s1 − ω̃s2)Jz + �2λ̃SzJy. (40)

We note here that the operator Jy = i(a+
2 a1 − a+

1 a2)/2
may be interpreted as the angular momentum operator,
expressed in a Cartesian basis, of a pseudo two dimen-
sional harmonic oscillator associated with the b1 and b2

modes. We may thus consider the unitary transformation
to the pseudo-angular momentum basis [21,30]:

c1 =
1√
2
(a1 + ia2); c+

1 =
1√
2
(a+

1 − ia+
2 ),

c2 =
1√
2
(a1 − ia2); c+

2 =
1√
2
(a+

1 + ia+
2 ). (41)

The set of operators c+
i cj span an equivalent su(2) algebra

with generators

J ′
+ = c+

1 c2, J ′
− = c+

2 c1,

J ′
z =

1
2
(N ′

1 − N ′
2), (42)

which are unsymmetrized, except for J ′
z with symme-

try A2; the u(2) invariant is conserved N = N1 + N2 =
N ′

1 + N ′
2. As before covariant but unsymmetrized states

are obtained through:

|[N 0]jm〉〉′ = (−1)j−m|j − m, j + m〉 =

(−1)j−m[(j − m)!(j + m)!)]−
1
2 c

+(j−m)
1 c

+(j+m)
2 |0, 0〉,

(43)

and the Hamiltonian (37) writes

H̃
(0)
vibr = �λ̃0 + �

(ω̃s1 + ω̃s2)
2

(N + 1)

+ �(ω̃s1 − ω̃s2)J
′
x − �2λ̃SzJ

′
z. (44)

Within orientation II for the pseudo-spin operator Sz =
σz/2 we can use the concept of extended generators in-
troduced in [31] to solve the eigenvalue equation for H̃

(0)
vibr

in (40, 44). This determines unitary operators U(σzJα)
and U ′(σzJ

′
α) such that

U(σzJα)H̃(0)
vibrU(σzJα)−1 = UH̃

(0)
vibr

= �λ̃0 + �
(ω̃s1 + ω̃s2)

2
(N + 1) + �Ω(σz)Jz ,

U ′(σzJ
′
α)H̃(0)

vibrU
′(σzJ

′
α)−1 = U ′

H̃
′(0)
vibr

= �λ̃0 + �
(ω̃s1 + ω̃s2)

2
(N + 1) + �Ω(σz)J ′

z , (45)

with, in this case,

Ω(σz) = [λ̃2 + (ω̃s1 − ω̃s2)
2]1/2 (46)

independent of σz. The operator U(σzJα) is given by

U(σzJα) = exp
[

− i
(Ω − ω0)

λ̃
σzJ+

]

exp
[

ln(
2Ω

Ω + ω0
)Jz

]

× exp
[

− i
(Ω − ω0)

λ̃
σzJ−

]

= exp[−2iξσzJx], (47)

where we set ω0 = ω̃s1 − ω̃s2 and with

tan ξ =
(Ω − ω0)

λ̃
, cos ξ =

[
Ω + ω0

2Ω

]1/2

.

For the U ′(σzJ
′
α) operator we have

U ′(σzJ
′
α) = exp

[
(Ω + λ̃σz)

ω0
J ′

+

]

exp
[

ln
(

2Ω

Ω − λ̃σz

)

J ′
z

]

× exp

[

− (Ω + λ̃σz)
ω0

J ′
−

]

= exp[2iξ′J ′
y], (48)

with

tan ξ′ =
Ω + λ̃ σz

ω0
, cos ξ′ =

[
Ω − λ̃ σz

2Ω

]1/2

.

Thus within the vibronic bases
∣
∣
∣
∣[1 0]

1
2
1Erσ̄

〉〉

|[N 0]jm(Γv)〉〉,
∣
∣
∣
∣[1 0]

1
2
1Erσ̄

〉〉

|[N 0]jm〉〉′,

for UH̃
(0)
vibr and U ′

H̃
′(0)
vibr, respectively, we obtain the eigen-

values

E
(0)
vibr = �λ̃0 +

(ω̃s1 + ω̃s2)
2

(N + 1)

+ �[(ω̃s1 − ω̃s2)
2 + λ̃2]

1
2 m, m: −j, · · · + j. (49)
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This expression shows, as predicted, that these eigenval-
ues are independent of σ̄. The symmetrized vibronic eigen-
states are obtained through a two steps procedure.

Firstly from the expressions of the U(σzJα)
and U ′(σzJ

′
α) operators (47, 48) we obtain unsym-

metrized eigenstates of H̃
(0)
vibr:

∣
∣
∣
∣[1 0]

1
2
1Erσ̄

〉〉

|[N 0]jm(θe)〉〉

= U(σzJα)−1

∣
∣
∣
∣[1 0]

1
2
1Erσ̄

〉〉

|[N 0]jm(Γv)〉〉

= exp[2iξσzJx]
∣
∣
∣
∣[1 0]

1
2
1Erσ̄

〉〉

|[N 0]jm(Γv)〉〉

=
∑

m′
ei(m−m′) π

2 d
(j)
m′m(2ξ(−1)σ̄)

×
∣
∣
∣
∣[1 0]

1
2
1Erσ̄

〉〉

|[N 0]jm′(Γ ′)〉〉, (50)

with θe = θ1 (θe = θ2 = −θ1) when σ̄ = 1̄ (σ̄ = 2̄) and

cos θe =
ω0

Ω
, sin θe =

λ̃

Ω
(−1)σ̄. (51)

Likewise with the U ′(σzJ
′
α) operator we obtain the eigen-

states in the form
∣
∣
∣
∣[1 0]

1
2
1Erσ̄

〉〉

|[N 0]jm(θ′e)〉〉′

= U ′(σzJ
′
α)−1

∣
∣
∣
∣[1 0]

1
2
1Erσ̄

〉〉

|[N 0]jm〉〉′

= exp[−2iξ′J ′
y]
∣
∣
∣
∣[1 0]

1
2
1Erσ̄

〉〉

|[N 0]jm〉〉′

=
∑

m′
d
(j)
mm′(2ξ′(σ̄))

×
∣
∣
∣
∣[1 0]

1
2
1Erσ̄

〉〉

|[N 0]jm′〉〉′, (52)

with θ′e = θ′1 (θ′e = θ′2 = π − θ′1) when σ̄ = 1̄ (σ̄ = 2̄) and

cos θ′e =
λ̃

Ω
(−1)σ̄+1, sin θ′e =

ω0

Ω
. (53)

In equations (50, 52) the d(j) Wigner matrices are those
given for instance in [32]. In a second step, starting from
the preceding states (50, 52) and using techniques simi-
lar to those presented in [17] we obtain the symmetrized
vibronic eigenstates
∣
∣
∣
∣[1 0]

1
2
1Er, [N 0]jm(θe); Er σ̄

〉〉

=

eiϕ(τ)

∣
∣
∣
∣[1 0]

1
2
1Erσ̄e

〉〉

|[N 0]jm(θe)〉〉, (54)

∣
∣
∣
∣[1 0]

1
2
1Er, [N 0]jm(θ′e); Er σ̄

〉〉′
=

eiϕ′(τ ′)
∣
∣
∣
∣[1 0]

1
2
1Erσ̄e

〉〉

|[N 0]jm(θ′e)〉〉′, (55)

which are respectively eigenstates of the sets H̃0
vibr, Sz, J̃z

and H̃0
vibr, Sz, J̃ ′

z. The values for the phase factors eiϕ(τ)

and eiϕ′(τ ′) as a function of the other quantum numbers
are given by:

j j − m σ̄e θe eiϕ(τ) σ̄
integer even 1̄ θ1 1 1̄

2̄ −θ1 1 2̄
odd 1̄ θ1 i 1̄

2̄ −θ1 −i 2̄
half- integer even 1̄ θ1 i 2̄

2̄ −θ1 −i 1̄
odd 1̄ θ1 1 2̄

2̄ −θ1 1 1̄

(56)

for the states (54). On the other hand for the states (55)
we have

∣
∣
∣
∣[1 0]

1
2
1Er, [N 0]jm(θ′1); Er1̄

〉〉′
j integer

=
∣
∣
∣
∣[1 0]

1
2
1Er1̄

〉〉

|[N 0]jm(θ′1)〉〉′
∣
∣
∣
∣[1 0]

1
2
1Er, [N 0]jm(θ′2); Er2̄

〉〉′

= (−1)j+m

∣
∣
∣
∣[1 0]

1
2
1Er2̄

〉〉

|[N 0]jm(θ′2)〉〉′ (57)
∣
∣
∣
∣[1 0]

1
2
1Er, [N 0]jm(θ′2); Er1̄

〉〉′
j half-integer

=
∣
∣
∣
∣[1 0]

1
2
1Er2̄

〉〉

|[N 0]jm(θ′2)〉〉′
∣
∣
∣
∣[1 0]

1
2
1Er, [N 0]jm(θ′1); Er2̄

〉〉′

= (−1)j+m

∣
∣
∣
∣[1 0]

1
2
1Er1̄

〉〉

|[N 0]jm(θ′1)〉〉′. (58)

To conclude we note that the algebraic chain adapted to
the considered case allowing to find the exact eigenval-
ues is

u(2)e ⊕ u(2)s1s2 ⊃ su∗(2)e ⊕ su∗(2)s1s2 ⊃ G
[1 0] × [N 0] ↓ 1

2 × j ↓ Γevσev
(59)

instead of the common u(2)e ⊕ (u(1)s1 ⊕ u(1)s2) ⊃ G as-
sociated with basis (33).

7.1.2 Correlations with previous studies

One of the very first study of the dynamical JT effect
in molecules with a four-fold axis of symmetry is that
of Child [33]; it was then reconsidered in [26] and by
Hougen [27]. The standard starting point is given by the
terms in equation (26) in terms of Pauli matrices

Ĥ(0) = σ̂0

{

�ωs1

(

Ns1 +
1
2

)

+ �ωs2

(

Ns2 +
1
2

)}

+ σ̂x V1 s1Q
(B1) + σ̂y V2 s2Q

(B2). (60)
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The notation in equation (60) is that of [4] and related to
those in [26,27] by

V1 = k1 = f, V2 = k2 = −g; �ωiDi =
V 2

i

2ω2
i

. (61)

Approximate solutions of equation (60), for the eigenval-
ues only, have been given in several limiting cases:

(i) ωs1 
 ωs2

With this assumption equation (49) may be written
as

E
(0)
vibr ≈ λ̃0 + �

(ω̃s1 + ω̃s2)
2

(N + 1)

+ �λ̃

[

1 +
(ω̃s1 − ω̃s2)

2

2λ̃2
+ · · ·

]

m, (62)

with 2m = N, N − 2 · · · − N . The limiting case con-
sidered in [26] ωs1 = ωs2 = ω amounts to keep only
the zeroth-order term in the preceding expansion and
leads to the relations between parameters

λ̃0 = −(D1 + D2) ω,
(ω̃s1 + ω̃s2)

2
= ω,

λ̃

2
= 2

√
D1D2 ω. (63)

The additional assumption of equal couplings V1 = V2

in equation (60) transforms the E ⊗ (b1 + b2) case to
an equivalent E ⊗ e one [4,27]. The energies have
been given, within the same order of approximation,
by several authors [1,4,34,35] in the form (ω ≡ ωE)

E(0) = �ωE(n + 1) − V 2
E

ω2
E

(1 ± 	2)

= �ωE(n + 1) − V 2
E

ω2
E

(

j2
2 − 	2

2 +
3
4

)

, (64)

where 	2 is the pseudo doubly degenerate oscillator
angular momentum and j2 = 	2 ± 1/2. We find then
from (62, 63):

λ̃0 = −2Dω = − V 2
E

�ω2
E

,
(ω̃s1 + ω̃s2)

2
= ω,

λ̃

2
= 2Dω =

V 2
E

�ω2
E

. (65)

In this case where ωs1 
 ωs2 it is clear that the appro-
priate form for H̃0

vibr is that given by equation (44).
It can easily be checked from equations (46, 53) that

cos θ′e → ∓1, sin θ′e → 0.

So in the limiting case ωs1 = ωs2 the vibrational func-
tions in (52) reduce to the usual oscillator states in the
angular momentum basis (43):

|[N 0]jm(θ′1 = 0)〉〉′ = |[N 0]jm〉〉′,
|[N 0]jm(θ′2 = π)〉〉′ = (−1)j−m|[N 0]j − m〉〉′.

The associated symmetry adapted vibronic states are
given by (57) with θ′1 = 0, θ′2 = π.

(ii) (ωs1 − ωs2)/(ωs1 + ωs2) �
√

D1D2

In this case we write equation (49):

E
(0)
vibr ≈ λ̃0 + �

(ω̃s1 + ω̃s2)
2

(N + 1)

+ �(ω̃s1 − ω̃s2)

[

1 +
λ̃2

2(ω̃s1 − ω̃s2)2
+ · · ·

]

m.

(66)

Keeping terms up to the first order, the comparison
with the corresponding result in [26] gives

λ̃0 = −D1 ω1 − D2 ω2, ω̃s1 = ω1,

λ̃

2
=

√
D1D2( ω1 + ω2), ω̃s2 = ω2. (67)

The appropriate form for H̃0
vibr is now that given by

equation (40) and we deduce from equations (46, 51)
that

cos θe → 1, sin θe → 0.

So for large ωs1 −ωs2 values the vibrational functions
in (50) reduce to the usual oscillator states in the
Cartesian basis (39):

|[N 0]jm(θ1 = 0)〉〉 = |[N 0]jm(θ2 = 0)〉〉
= |[N 0]jm〉〉.

The associated symmetry adapted vibronic states are
given by (54, 56) with θ1 = θ2 = 0.

7.2 E ⊗ (bi + aj) case

In such a case we have one active coordinate bi (i = 1 or 2)
and we assume a non zero coupling with a non-active mode
with symmetry Aj (j = 1 or 2) (Eq. (23)). Most of the
time only totally symmetric modes are considered but all
cases can be treated within a unique formalism. The im-
portance of taking into account such quadratic couplings
was first established by Bacci [24]. More recently the in-
fluence of large quadratic couplings in E ⊗ e problems
has been investigated [9,36]. The most general effective
vibronic Hamiltonian is of the form

H̃vibr = Ie

{
∑

n

s t̃
CiCi(A1)
{ni}{ni}

0
sV

CiCi(A1)
{ni}{ni}

+ s′ t̃
CjCj(A1)

{nj}{nj}
0
s′V

CjCj(A1)

{nj}{nj}

+
∑

{n}{n′}
ss′ t̃

CiCj CiCj(A1)

{ninj}{n′
in

′
j}

0
ss′V

CiCj CiCj(A1)

{ninj}{n′
in

′
j}

}

+ E(1,2Bk)
∑

n

ss′ t̃
CiCj C′

iC
′
j(Bk)

{ninj}{n′
in

′
j}

0
ss′V

CiCj C′
iC

′
j(Bk)

{ninj}{n′
in

′
j} ,

(68)

with Ci(C′
i) = Bi for ni(n′

i) odd and Ci(C′
i) = A1 for

ni(n′
i) even; likewise Cj(C′

j) = Aj for nj(n′
j) odd and
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Cj(C′
j) = A1 for nj(n′

j) even. As before we have the con-
ditions ni +nj = n′

i +n′
j and the matrix elements are non-

zero only if n′
i + n′

j ≤ N . In Appendix C.1 equation (68)
is detailed for the cases N ≤ 2.

In order to obtain the dominant features of the zeroth-
order spectrum as well as good symmetry adapted basis
functions we take the following approximate expression:

H̃
(0)
vibr = t̃

A1A1(A1)
{0}{0} Iv + s t̃

BiBi(A1)
{1}{1}

0
sV

BiBi(A1)
{1}{1}

+ s′ t̃
AjAj(A1)

{1}{1}
0
s′V

AjAj(A1)

{1}{1}

+ E(1,2Bk)
ss′ t̃

BiA1 A1Aj(Bk)

{10}{01}
0

ss′V
BiA1 A1Aj(Bk)

{10}{01} .

(69)

All matrix elements can be computed straightforwardly in
the coupled basis |[1 0]121Er, (vsΓi, v

′
s′Γj)Γv; Erσev〉 (in all

cases the overall symmetry of states is Er since Aj ×Er =
Bi × Er = Er) and are given in Appendix C.2. However
for our purpose it is not the best choice. Equation (69)
may also be written

H̃
(0)
vibr = �λ̃0 + �ω̃s

(

Ns +
1
2

)

+ �ω̃s′

(

N ′
s′ +

1
2

)

+ �λ̃Sα(sa
+(Bi)

s′a(Aj) + s′a+(Aj)
sa

(Bi)), (70)

with α = x (resp. y) when k = 1 (resp. k = 2) in equa-
tion (69). Although the symmetries of electronic opera-
tors are different from that of Section 7.1 (Eq. (34)) we
can take advantage of the various orientations for the E
irreps defined in [17] if we start from the unsymmetrized
vibronic bases

∣
∣
∣
∣[1 0]

1
2
1Erσe

〉〉

|vΓi, N − vΓj ; Γv〉,

since we have

〈〈

[1 0]
1
2
1Erσ

′
e

∣
∣
∣
∣E

(1,2Bk)

∣
∣
∣
∣[1 0]

1
2
1Erσe

〉〉

=

(−1)σe+1

2
δσe,σ′

e
,

if and only if orientation I (σe = σ) is used when Bk = B1

and orientation III (σe = ¯̄σ) when Bk = B2 in (69).
We note that these symmetries are those of the active
coordinate only for totally symmetric Aj = A1 modes.

Setting sa
(Bi) = a1 and s′a(Aj) = a2 equation (70)

takes a form similar to one of those encountered previously
(see Eq. (44))

H̃
(0)
vibr = �λ̃0 + �ω̃s

(

N1 +
1
2

)

+ �ω̃s′

(

N2 +
1
2

)

+ �λ̃Sα(a+
1 a2 + a+

2 a1)

= �λ̃0 + �
(ω̃s + ω̃s′)

2
(N + 1)

+ �(ω̃s − ω̃s′)Jz + �2λ̃SαJx, (71)

and is again a function of the generators of an u(2) algebra:

J+ = J
(Bk)
+ = a+

1 a2, J− = J
(Bk)
− = a+

2 a1,

Jz = J (A1)
z =

1
2
(N1 − N2). (72)

But this time the last term in equation (71) involving
Jx = (a+

1 a2 + a+
2 a1)/2 cannot be interpreted as the an-

gular momentum of a pseudo two-dimensional oscillator
associated with the bi and aj modes. As before the polyad
states are given by u(2) ⊃ su(2) ⊃ G covariant symmetry
adapted states built from the a+

i (j = N/2, m = N/2−v):

|[N 0]jm(Γv)〉〉 = (−1)j−m[(j − m)!(j + m)!]−1/2

× |j − m(Γi), j + m(Γj); Γv〉.

Keeping in mind the discussion of the preceding section,
this basis may be seen as adapted to a small coupling
regime. A new basis may be defined for the case ω̃s 
 ω̃s′ .
Among the various possible unitary transformations we
choose the orthogonal one

c1 =
1√
2
(a1 + a2); c+

1 =
1√
2
(a+

1 + a+
2 ),

c2 =
1√
2
(a1 − a2); c+

2 =
1√
2
(a+

1 − a+
2 ), (73)

which keeps the Hamiltonian (71) in the same form

H̃
(0)
vibr = �λ̃0 + �

(ω̃s + ω̃s′)
2

(N + 1)

+ �
(ω̃s − ω̃s′)

2
(c+

1 c2 + c+
2 c1) + �λ̃Sα(c+

1 c1 − c+
2 c2)

= �λ̃0 + �
(ω̃s + ω̃s′)

2
(N + 1) + �(ω̃s − ω̃s′)J ′

x + �2λ̃SαJ ′
z ,

(74)

with corresponding basis states of the form (43). We can
thus proceed as in Section 7.1.1 with unitary operators
U(σαJβ) and U ′(σαJ ′

β) [31] (σα = 2Sα) to solve the eigen-

value equation for H̃
(0)
vibr. In particular it appears that,

within the considered order of approximation, the eigen-
values are given by equation (49) with the substitution
s1 → s, s2 → s′ and the appropriate algebraic chain for
the E⊗(bi+aj) problem is similar to that in equation (59).
The symmetry adapted eigenbasis is obtained with a pro-
cedure identical to that in Section 7.1.1 using electronic
states whose orientation is determined by the k value in
the product Bi × Aj = Bk; these are explicitly given to-
gether with the U and U ′ operators in Appendix C.3.

7.3 E ⊗ bi cases

If in the two previous models we assume a negligible vi-
bronic coupling for one of the two modes we are left with
an E⊗bi problem or two uncoupled such cases (accidental
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Born-Oppenheimer case [27]). As can be seen from equa-
tions (32, 68) the effective Hamiltonian reduces to a poly-
nomial expansion in the number operator which writes,
keeping only one bi mode

H̃vibr = Ie

{
∑

n

si t̃
CiCi(A1)
{n}{n}

0
si

V
CiCi(A1)
{n}{n}

}

= �λ̃0 + �ω̃si

(

Nsi +
1
2

)

+
∑

n>1

si t̃
CiCi(A1)
{n}{n}

0
si

V
CiCi(A1)
{n}{n} ,

(75)

where the electronic operators reduce to the identity.
Within the same order of approximation than previously
(Sects. 7.1.1, 7.2) we simply have

H̃0
vibr = �λ̃0 + �ω̃si

(

Nsi +
1
2

)

, (76)

and we will show that this reflects the known exact solv-
ability of the linear E ⊗ bi JT system [4]. Also it is one
of the very few cases where the effective operators can be
given a precise interpretation.

The untransformed Hamiltonian is given by (Eq. (23))

H = �ωsi

(

Ns +
1
2

)

+ sit
Bi [1−1]E(1,2Bi)

sQ
(Bi)

= �ωsi

(

sia
+(Bi)

sia
(Bi) +

1
2

)

+ �δ
(

sia
+(Bi) + sia

(Bi)
)

Sα, (77)

with �δ = sit
Bi
√

�/2ωsi. Usually [4,27] H is projected
onto the electronic subspace which leads to two uncoupled
eigenvalue equations for the vibronic matrix Ĥ . We pre-
fer to use the formalism developed in [31] which allows to
treat both symmetries b1 and b2 simultaneously; also it
gives through a unique transformation both the eigenval-
ues and eigenstates. With the unitary operator

U(Sα, sia
+(Bi), sia

(Bi)) =

exp
[

δ

ωsi

(sia
+(Bi) − sia

(Bi))Sα

]

, (78)

function of the extended generators of the harmonic oscil-
lator algebra, we obtain

UH = UHU−1 = �ωsi

(

sia
+(Bi)

sia
(Bi) +

1
2

)

− �
δ2

4ωsi

,

(79)
with doubly degenerate energies

Eni± = �ωsi

(

ni +
1
2

)

− �
δ2

4ωsi

, (80)

in the vibronic bases

|niΓi〉|±〉 = |niΓi〉
∣
∣
∣
∣[1 0]

1
2
1Erσe

〉〉

= (ni!)−1/2
sia

+(Bi)ni |0〉
∣
∣
∣
∣[1 0]

1
2
1Erσe

〉〉

, (81)

with σe = 1, 2 (resp. σe = ¯̄1, ¯̄2) when Bi = B1 and α = x
(resp. Bi = B2 and α = y). With equations (76, 80) we
obtain

ω̃si = ωsi , λ̃0 = − δ2

4ωsi

.

The corresponding degenerate eigenstates of H (77) are
next obtained with

|ñiΓi±〉 = exp
[

− δ

ωsi

(sia
+(Bi) − sia

(Bi))Sα

]

|niΓi〉|±〉

= (ni!)−
1
2

(

sia
+(Bi) +

δ

ωsi

Sα

)ni

|0̃A1±〉

= (ni!)−
1
2

(

sia
+(Bi)+

δ

ωsi

Sα

)ni
∣
∣
∣
∣∓

δ

2ωi
A1

〉

||±〉,
(82)

where | ∓ (δ/2ωi)A1〉 are two totally symmetric oscilla-
tor coherent states [37,38]. We note that we may alterna-
tively write the Hamiltonian (77) in term of generalized
displaced creation and annihilation operators

sib
+(Bi) = sia

+(Bi) +
δ

ωsi

Sα, sib
(Bi) = sia

(Bi) +
δ

ωsi

Sα,

H = �ωsi

(

sib
+(Bi)

sib
(Bi) +

1
2

)

− �
δ2

4ωsi

.

With both approaches symmetry adapted eigenstates are
easily obtained since, within the appropriate orientation,
all CGC reduce to a phase (Appendix A.4, Tab. 2)

F
σe (Er)

(Er Γi) σ′
e

= eiϕ δσe,σ′
e
,

and the operator entering the exponential in (78) is totally
symmetric in G.

We note that for a E ⊗ (bi + bi) case, within the same
order of approximation, the effective Hamiltonian is of the
form

H̃
(0)
vibr = �λ̃0 + �ω̃s

(

Ns +
1
2

)

+ �ω̃s′

(

N ′
s′ +

1
2

)

+ �λ̃(sa
+(Bi)

s′a(Bi) + s′a+(Bi)
sa

(Bi)), (83)

where the electronic operators reduce once again to the
identity. It can also be written

H̃
(0)
vibr = �λ̃0 + �

(ω̃s + ω̃s′)
2

(N + 1)

+�
(ω̃s − ω̃s′)

2
(Ns − N ′

s′)

+�λ̃(sa
+(Bi)

s′a(Bi) + s′a+(Bi)
sa

(Bi))

= �λ̃0 + �
(ω̃s + ω̃s′)

2
(N + 1)

+�(ω̃s − ω̃s′)Jz + �2λ̃Jx, (84)

and diagonalized through a standard unitary transforma-
tion of the su(2) algebra [37] built from the elementary
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boson operators associated with s and s′ modes:

J+ = J
(A1)
+ = sa

+(Bi)
s′a(Bi), Jz = J (A1)

z =
1
2
(Ns − N ′

s′),

J− = J
(A1)
− = s′a+(Bi)

sa
(Bi).

However since this time the untransformed vibronic
Hamiltonian contains, besides the linear terms as
in (77), cubic ones involving s(Q(Bi))2s′Q(Bi) and
sQ

(Bi)
s′(Q(Bi))2, one cannot expect to find the exact

transformation between the two approaches.

7.4 E ⊗ (bi + er) and E ⊗ er

For the electronic states considered in this paper it can
be seen from equation (23) that vibronic coupling terms
involving modes with the same E symmetry type as the
electronic state are possible; also purely vibrational cubic
couplings are allowed in the untransformed Hamiltonian
expansion. We recall that r equals n/4 for Cnv and Dn

groups and n/2 for Dnd groups. In both cases the vibra-
tional operators for the doubly degenerate mode are of the
form [17]:

[m1 −m2]
s V(jv)

	vΓvσv
= [m1 −m2]

s V(jv ,	vΓv)
σv

with

	v = 4p Γv = A1, A2

	v = 4p + 2 Γv = B1, B2

	v = 4p + 1, 4p + 3 Γv = Er

,
(85)

and the most general effective vibronic Hamiltonian writes
(Appendix A)

H̃vibr = Ie

{
∑

n

s′ t̃
CiCi(A1)
{ni}{ni}

0
s′V

CiCi(A1)
{ni}{ni}

+ s t̃
jv ,4pA1(A1)
{n}{n}

[n−n]
s V(jv,4p A1)

+
∑

{n}{n′}
s′st̃

γiγv(C) γ′
iγ

′
v(C)(A1)

{nin}{n′
in

′}
0

s′sV
γiγv(C) γiγv(C)(A1)
{nin}{n′

in
′}

}

+ E(1,0A2)

{
∑

{n}{n′}
s t̃

jv ,4pA2(A2)
{n}{n}

[n−n]
s V(jv,4p A2)

+ s′st̃
γiγv(C) γ′

iγ
′
v(C′)(A2)

{nin}{n′
in

′}
1

s′sV
γiγv(C)γ′

iγ
′
v(C′)(A2)

{nin}{n′
in

′}

}

+
∑

t=1,2

E(1,2Bt)

{
∑

{n}{n′}
st̃

jv ,4p+2Bt(Bt)
{n}{n}

[n−n]
s V(jv,4p+2 Bt)

+ s′s t̃
γiγv(C) γ′

iγ
′
v(C′)(Bt)

{nin}{n′
in

′}
0

s′sV
γiγv(C) γ′

iγ
′
v(C′)(Bt)

{nin}{n′
in

′}

}

, (86)

where we set γiγv = Cijv	vΓv; s′ is associated with the bi

active coordinate and s with the er mode. In (86) we have
ni + n = n′

i + n′ ≤ N and the summation over the other
indices is implied. In Appendix D.1 the Hamiltonian (86)
is detailed for the cases N ≤ 2.

As in the previous sections the computation of matrix
elements can be made in the coupled basis

∣
∣
∣
∣[1 0]

1
2
1Er; v′s′Γi, [vs 0]j	Γ ; Γv; Γevσev

〉

, (87)

with v′s′ +vs = N and associated with the algebraic chain:

u(2)e ⊕ (u(1)s′ ⊕ u(2)s) ⊃
[1 0] × v′s′ × [vs 0] ↓

su∗(2)e ⊕ (u(1)s′ ⊕ su∗(2)s) ⊃ G
1
2 × v′s′ × j ↓ Γevσev

. (88)

In view of potential applications we prefer to look at prop-
erties of different possible zeroth order models and for this
the uncoupled basis is often a more convenient starting
point. Restricting as before to dominant terms we find
the approximate expansion:

H̃0
vibr = t̃

A1A1(A1)
{0}{0} Iv + s′ t̃

BiBi(A1)
{1}{1}

0
s′V

BiBi(A1)
{1}{1}

+st̃
0,0A1(A1)
{1}{1}

[1−1]
s V(0,0 A1)

+ E(1,0A2)
s t̃

1,0A2(A2)
{1}{1}

[1−1]
s V(1,0 A2)

+
∑

t=1,2

E(1,2Bt)
s t̃

1,2Bt(Bt)
{1}{1}

[1−1]
s V(1,2 Bt). (89)

The expression for the matrix elements of the various op-
erators in (89), within basis (87), is given in Appendix D.2.
We could also keep in the expansion some anharmonicity
operators without changing the results of the discussion to
follow. On the first two lines of (89) we have the harmonic
terms

H̃
(0)
vib = �ω̃s′

(

N ′
s′ +

1
2

)

+ �ω̃s(Ns + 1). (90)

The dimension of each N polyad is thus g = (N + 1)(N +
2)/2. The levels splitting is determined by the other three
vibronic operators which may be written [17]

H̃
(1)
vibr = �λ̃xSxJx + �λ̃ySyJy + �λ̃zSzJz, (91)

where we recall that the pseudo-spin operators Sα are as-
sociated with the electronic su(2)e subalgebra and the Jα

with the vibrational su(2)s subalgebra for mode s. For ar-
bitrary values of the coupling constants λ̃α nothing can
be deduced concerning the energy level patterns. However
there are some limiting cases for which exact solutions can
be found. These correspond to situations where two of the
coupling constants satisfy |λ̃α| 
 |λ̃β | which implies

H̃
(1)
vibr 
 �λ̃α(SαJα ± SβJβ) + �λ̃γSγJγ . (92)

Additional special cases arise when all three effective vi-
bronic constants λ̃α are nearly equal which leads to

H̃
(1)
vibr 
 λ̃

∑

α

SαJα = λ̃S · J , (93)

or when |λ̃α| 
 |λ̃β | 
 0 and then

H̃
(1)
vibr 
 �λ̃γSγJγ . (94)

We discuss below these possible limiting cases and deter-
mine the eigenvalues and symmetry adapted vibronic kets.
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7.4.1 Eigenvalues and symmetry adapted states: equal
coupling case

We begin with the most degenerate case for which the
quite simple form of the zeroth-order model

H̃
(0)
vibr = �ω̃s′

(

N ′
s′ +

1
2

)

+ �ω̃s(Ns + 1) + �λ̃S · J (95)

suggests the introduction of the diagonal subalgebra
su(2)D of su(2)e⊕su(2)s with generators J ′

α = Sα+Jα. In
the chain su(2)e ⊕ su(2)s ⊃ su(2)D ⊃ so(2)D the coupled
basis (j′ = j ± 1

2 )

∣
∣
∣
∣[1 0]

1
2
, [vs 0]j; j′m′

〉〉

=

∑

me,m

C
me m (j′)
(1
2 j) m′

∣
∣
∣
∣[1 0]

1
2
me

〉〉

|[vs 0]jm〉〉, (96)

is an eigenbasis of S · J . Within the total vibronic basis

|N − vsΓi〉
∣
∣
∣
∣[1 0]

1
2
, [vs 0]j; j′m′

〉〉

, (97)

we thus obtain the zeroth order energies, setting vs = v:

E0
vibr = �ω̃s′

(

N − v +
1
2

)

+ �ω̃s(v + 1)

+ �
λ̃

2

[

j′(j′ + 1) − j(j + 1) − 3
4

]

= �
(ω̃s′ + ω̃s)

2

(

N +
3
2

)

+�
(ω̃s′ − ω̃s)

2

(

N − 2v − 1
2

)

+ �
λ̃

2

[

j′(j′ + 1) − v

2

(v

2
+ 1

)
− 3

4

]

(98)

where the last form shows the levels splitting within the
polyad the organization of which depends upon the rel-
ative order of magnitudes of (ω̃s′ − ω̃s)/2 and λ̃. Each
level has a degeneracy of 2j′ + 1. The symmetry of these
degenerate states is obtained with the symmetry rules
given in (85) with m1 = v, m2 = 0 (j = v/2) and
standard multiplication rules Ai × Er = Bi × Er = Er,
Er ×Er = A1 + A2 + B1 + B2. Using the same techniques
as described in [17] and [21] one can also find the expres-
sions of the symmetry adapted states. We first determine
those |[1 0]12 , [v 0]j; j′|m′|Γσ〉〉 arising from the states (96)
and obtain (ε = 1

2 + j − j′):

• for v odd, j′ integer:

|[1 0]12 , [v 0]j; j′|m′|Γ1〉〉 =
iv+1

√
2

×{|[1 0]12 , [v 0]j; j′m′〉〉+(−1)ε|[1 0]12 , [v 0]j; j′−m′〉〉}

|[1 0]12 , [v 0]j; j′|m′|Γ2〉〉 =
iv√
2

×{|[1 0]12 , [v 0]j; j′m′〉〉−(−1)ε|[1 0]12 , [v 0]j; j′−m′〉〉}

with Γ1, Γ2 = A1, A2 for m′ even and Γ1, Γ2 = B1, B2

for m′ odd;
• for v even, j′ half integer:

|[1 0]12 , [v 0]j; j′|m′|Er1〉〉 =
iv+1

√
2

×{|[1 0]12 , [v 0]j; j′m′〉〉−(−1)ε|[1 0]12 , [v 0]j; j′−m′〉〉}
|[1 0]12 , [v 0]j; j′|m′|Er2〉〉 = i2|m

′|−1 iv√
2

×{|[1 0]12 , [v 0]j; j′m′〉〉+(−1)ε|[1 0]12 , [v 0]j; j′−m′〉〉}.
The total zeroth order vibronic states symmetrized in the
chain

u(1)s′ ⊕ (u(2)e ⊕ u(2)s)
N − v × [1 0] × [v 0]
⊃ u(1)s′ ⊕ (su∗(2)e ⊕ su∗(2)s)
↓ N − v × 1

2 × j
⊃ u(1)s′ ⊕ su∗(2)D ⊃ G
↓ N − v × j′ ↓ Γevσev

(99)

are built with
∣
∣
∣
∣N − vΓi, [1 0]

1
2
, [v 0]j; j′|m′|Γ ; Γevσev

〉〉

=

F
σ (Γev)

(Γi Γ ) σev
|N − vΓi〉

∣
∣
∣
∣[1 0]

1
2
, [v 0]j; j′|m′|Γσ

〉〉

.

(100)

When N−v is odd Γi = Bi and the states may be obtained
with the values of the CGC given in Table 2; when N − v
is even so Γi = A1 and

F
σ (Γev)

(A1 Γ ) σev
= δΓev ,Γ δσev ,σ.

7.4.2 Eigenvalues and symmetry adapted states: λ̃α = ±λ̃β ,

λ̃γ �= 0 with α �= β �= γ

We consider first the values (α, β, γ) = (x, y, z) in equa-
tion (92) and we will show next how other cases can be
deduced. Introducing the ladder operators S± and J±
of su(2)e and su(2)s respectively, the Hamiltonian for our
system writes:

+H̃0
vibr = H̃0

vib + �λ̃x

[
1
2
(S+J− + S−J+) + δ̃zSzJz

]

,

(101)
or

−H̃0
vibr = H̃0

vib + �λ̃x

[
1
2
(S+J+ + S−J−) + δ̃zSzJz

]

,

(102)
where we have set δ̃z = λ̃z/λ̃x (λ̃x �= 0). In both cases a
basis for the space of states is given by

|±〉〉|[v 0]j m〉〉 ≡
∣
∣
∣
∣[1 0]

1
2
1Erσ̄

〉〉

|[v 0]j m〉〉 (103)

≡
∣
∣
∣
∣[1 0]

1
2
me

〉〉

|[v 0]j m〉〉,
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where |±〉〉 are the electronic states in orientation II and
|[v 0]j m〉〉 the standard su(2)s covariant states for the er

mode [17]. For clarity we temporarily omit the states
|N − v Γi〉 associated with the bi mode. In order to solve
the eigenvalue equations we appeal to the formalism de-
veloped in [31] which allows first to write the Hamiltonian
in terms of the generators of a new su(2) algebra.

Case (a) +H̃0
vibr (Eq. (101))

We introduce the F operator function

F = (S+J− + S−J+)2 = J2 − J2
z − 2SzJz , (104)

which is easily shown to commute with +H̃0
vibr and the

eigenvalues of which f(j, m) = (j − m)(j + m + 1) have
a fourfold degeneracy in the basis (103) the degenerate
states being

|+〉〉|[v 0]j m〉〉, |−〉〉|[v 0]j m + 1〉〉,
|+〉〉|[v 0]j − m − 1〉〉, |−〉〉|[v 0]j − m〉〉, (105)

with m = −j,−j + 1 · · · j − 1. Next we build an su(2)(M)
algebra which is isomorphic to that of a spin 1/2 and with
generators:

M+ =
1√F S+J−, M− =

1√F S−J+, Mz = Sz. (106)

In particular we have, using our conventions for covariant
states [17]

M+|+〉〉|[v 0]j m〉〉 = |−〉〉|[v 0]j m + 1〉〉,
M+|−〉〉|[v 0]j m + 1〉〉 = 0,

M−|−〉〉|[v 0]j m + 1〉〉 = |+〉〉|[v 0]j m〉〉,
M−|+〉〉|[v 0]j m〉〉 = 0. (107)

The operator

∆ = Sz + Jz = Sz − 1
2 s	z =

1
2
(σz − s	z), (108)

s	z being the angular momentum of the doubly degen-
erate oscillator, has the eigenvalues ∆(m) = −(m + 1

2 )
(resp. ∆(m) = (m + 1

2 )) on the states |+〉〉|[v 0]j m〉〉,
|−〉〉|[v 0]j m+1〉〉 (resp. |+〉〉|[v 0]j −m−1〉〉, |−〉〉|[v 0]j −
m〉〉, and commutes with the su(2)(M) generators to-
gether with +H̃0

vibr . The latter can then be written as

+H̃0
vibr = H̃0

vib − �
λ̃z

4

+ �λ̃x

{
1
2

√
F(M+ + M−) + δ̃z∆Mz

}

, (109)

and diagonalized through a unitary transformation of the
su(2)(M) algebra. Explicitly, we obtain:

U+H̃0
vibrU

−1 = H̃0
vib − �

λ̃z

4
+ �2λ̃xΩ(F , ∆)Sz , (110)

where the operator function Ω(F , ∆) is given by

Ω(F , ∆) =
1
2
[F + δ̃2

z∆2]1/2. (111)

Within basis (105) we thus have the doubly degenerate
eigenvalues (except for m = −1/2)

+Ejm± = �ω̃s(2j + 1) − �
λ̃z

4
+ �λ̃xΩ±(j, m), (112)

with

Ω±(j, m) = ±Ω(j, m)

= ±1
2

[

(j − m)(j + m + 1) + δ̃2
z

(

m +
1
2

)2
]1/2

= ±1
4
[(v ∓ 	)(v ± 	 + 2) + δ̃2

z(±	 + 1)2]1/2, (113)

where we used [17] j = v/2, 	 = 2|m|. The U−1 operator
is given by

U−1 = (I + k†M+) exp[kzMz](I − kM−)

= (I − kM−) exp[−kzMz](I + k†M+), (114)

with

k = −2Ω(F , ∆) − δ̃z∆√F

= −
[

Ω(F , ∆) − δ̃z∆/2
Ω(F , ∆) + δ̃z∆/2

]1/2

, (115)

and

kz = ln
[

2Ω(F , ∆)
Ω(F , ∆) + δ̃z∆/2

]

. (116)

Unsymmetrized eigenstates of +H̃0
vibr (101) are next ob-

tained with U−1 acting on the states (m: j − 1 · · · 1/2
or 0) (105):

+Ψ̃
(1)
jm− = U−1|+〉〉|[v 0]j m〉〉

= cos[θ(j, m)]|+〉〉|[v 0]j m〉〉
− sin[θ(j, m)]|−〉〉|[v 0]j m + 1〉〉

+Ψ̃
(1)
jm+ = U−1|−〉〉|[v 0]j m + 1〉〉

= cos[θ(j, m)]|−〉〉|[v 0]j m + 1〉〉
+ sin[θ(j, m)]|+〉〉|[v 0]j m〉〉

+Ψ̃
(2)
jm− = U−1|+〉〉|[v 0]j − m − 1〉〉

= sin[θ(j, m)]|+〉〉|[v 0]j − m − 1〉〉
− cos[θ(j, m)]|−〉〉|[v 0]j − m〉〉

+Ψ̃
(2)
jm+ = U−1|−〉〉|[v 0]j − m〉〉

= sin[θ(j, m)]|−〉〉|[v 0]j − m〉〉
+ cos[θ(j, m)]|+〉〉|[v 0]j − m − 1〉〉 (117)
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with

cos[θ(j, m)] =

[
Ω(j, m) − δ̃z(m + 1/2)/2

2Ω(j, m)

]1/2

sin[θ(j, m)] =

[
Ω(j, m) + δ̃z(m + 1/2)/2

2Ω(j, m)

]1/2

(118)

and
cos[θ(j, m)] = sin[θ(j,−m − 1)].

The associated symmetry adapted states are listed below
in the form

∣
∣
∣
∣[1 0]

1
2
1Er, [v 0]j; Ω±, Γevσ̄

〉〉

, (119)

with all phases settled so that under time reversal

K
∣
∣
∣
∣[1 0]

1
2
1Er, [v 0]j; Ω±, Γevσ̄

〉〉

=
∣
∣
∣
∣[1 0]

1
2
1Er, [v 0]j; Ω±, Γev − σ̄

〉〉

.

• 	 = 2|m| = 4q, 4q + 2

|[1 0]121Er, [v 0]j; Ω+, Erσ̄〉〉 = iv+Ψ̃
(1)
jm+

|[1 0]121Er, [v 0]j; Ω+, Er − σ̄〉〉 = iv+Ψ̃
(2)
jm+

|[1 0]121Er, [v 0]j; Ω−, Erσ̄〉〉 = iv+Ψ̃
(1)
jm−

|[1 0]121Er, [v 0]j; Ω−, Er − σ̄〉〉 = −iv+Ψ̃
(2)
jm−

(120)

with (σ̄,−σ̄) = (1̄, 2̄) (resp. (σ̄,−σ̄) = (2̄, 1̄)) for 	 = 4q
(resp. 	 = 4q + 2).

• 	 = 2|m| = 4q + 1, 4q + 3

|[1 0]121Er, [v 0]j; Ω+, Γ1〉〉 =
iv+1

√
2

(+Ψ̃
(1)
jm+ + +Ψ̃

(2)
jm+)

|[1 0]121Er, [v 0]j; Ω+, Γ2〉〉 =
iv√
2
(+Ψ̃

(1)
jm+ − +Ψ̃

(2)
jm+)

|[1 0]121Er, [v 0]j; Ω−, Γ1〉〉 =
iv+1

√
2

(+Ψ̃
(1)
jm− − +Ψ̃

(2)
jm−)

|[1 0]121Er, [v 0]j; Ω−, Γ2〉〉 =
iv√
2
(+Ψ̃

(1)
jm− + +Ψ̃

(2)
jm−)

(121)

with Γ1, Γ2 = B1, B2 for 	 = 4q + 1 and A1, A2 for 	 =
4q + 3.

Special cases

• For m = −1/2 the states in (105) reduce to two and we
have a degeneracy of one for the energy levels (112). In
these cases we may take

|[1 0]121Er, [v 0]j; Ω+, A1〉〉 = iv+1U−1|−〉〉|[v 0]j 1
2 〉〉

|[1 0]121Er, [v 0]j; Ω−, A2〉〉 = ivU−1|+〉〉|[v 0]j − 1
2 〉〉

• The states |+〉〉|[v 0]j j〉〉 ≡ |[1 0]121Er1̄〉〉|[v 0]j j〉〉 and
|−〉〉|[v 0]j − j〉〉 ≡ |[1 0]121Er2̄〉〉|[v 0]j − j〉〉 which are

uncoupled by H̃
(1)
vibr (101) and also associated with the

zero eigenvalues of the F function (104) are eigenstates
of +H̃

(0)
vibr with eigenvalues

+Ej = �ω̃s(2j + 1) + �
λ̃z

2
j. (122)

The corresponding symmetry adapted states are given by:
∣
∣
∣
∣[1 0]

1
2
1Er, [v 0]j; +Ej , Erσ̄

〉〉

= |+〉〉|[v 0]j j〉〉
∣
∣
∣
∣[1 0]

1
2
1Er, [v 0]j; +Ej , Er − σ̄

〉〉

= |−〉〉|[v 0]j − j〉〉
(123)

with σ̄ = 1̄ (resp. σ̄ = 2̄) for v even and j even (resp. j
odd) and

∣
∣
∣
∣[1 0]

1
2
1Er, [v 0]j; +Ej , Γ1

〉〉

=

iv+1

2
(|+〉〉|[v 0]j j〉〉 + |−〉〉|[v 0]j − j〉〉)

∣
∣
∣
∣[1 0]

1
2
1Er, [v 0]j; +Ej , Γ2

〉〉

=

iv

2
(|+〉〉|[v 0]j j〉〉 − |−〉〉|[v 0]j − j〉〉) (124)

with Γ1 = B1, Γ2 = B2 (resp. Γ1 = A1, Γ2 = A2) for v
odd and 2j = 4q + 1 (resp. 2j = 4q + 3).

Case (b) −H̃0
vibr (Eq. (102))

The eigenvalue equation for −H̃0
vibr (101) is solved with

a method similar to that used for +H̃0
vibr . This time we

introduce the F operator function

F = (S+J+ + S−J−)2 = J2 − J2
z + 2SzJz, (125)

and the operator

∆ = −Sz + Jz = −Sz − 1
2 s	z = −1

2
(σz + s	z). (126)

Both commute with −H̃0
vibr and the degenerate

states (105) are replaced by (m = −j,−j + 1, · · · j − 1)

|−〉〉|[v 0]j m〉〉, |+〉〉|[v 0]j m + 1〉〉
|−〉〉|[v 0]j − m − 1〉〉, |+〉〉|[v 0]j − m〉〉. (127)

They are associated with the eigenvalues f̄(j, m) = (j −
m)(j + m + 1) = f(j, m) of F and ∆(m) = ∆(m) of ∆.
The su(2)(M) algebra (106) is replaced by an su(2)(N)
one with generators

N+ =
1√
F

S+J+ , N− =
1√
F

S−J− , Nz = Sz, (128)

with which −H̃0
vibr can be written

−H̃0
vibr = H̃0

vib + �
λ̃z

4

+ �λ̃x

{
1
2

√
F(N+ + N−) + δ̃z∆Nz

}

, (129)
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and diagonalized with a unitary operator U ′ of the
su(2)(N) algebra:

U ′−H̃0
vibrU

′−1 = H̃0
vib + �

λ̃z

4
+ �2λ̃xΩ(F , ∆)Sz . (130)

The operator function Ω(F , ∆) is given by (111) with the
substitutions F → F and ∆ → ∆. Within the basis (127)
we obtain the eigenvalues

−Ejm± = �ω̃s(2j + 1) + �
λ̃z

4
+ �λ̃xΩ±(j, m) (131)

with Ω±(j, m) given by (113). The corresponding un-
symmetrized eigenstates of −H̃0

vibr (101) are obtained
with U ′−1 acting on the states (127) with U ′−1 deduced
from U−1 in equations (114–116) with the substitutions
M± → N±, Mz → Nz, F → F and ∆ → ∆. This leads to
states −Ψ̃

(i)
jm± (i = 1, 2) which can be deduced from those

+Ψ̃
(i)
jm± (117) with the substitutions

|±〉〉|[v 0]j ± m〉〉 → |±〉〉|[v 0]j ± (m + 1)〉〉,
|∓〉〉|[v 0]j ± (m + 1)〉〉 → |∓〉〉|[v 0]j ± m〉〉.

cos[θ(j, m)] and sin[θ(j, m)] are still given by (118). Like-
wise symmetry adapted states are obtained from those
in equations (120, 121) with the substitutions +Ψ̃

(1)
jm± →

−Ψ̃
(2)
jm±, +Ψ̃

(2)
jm± → −Ψ̃

(1)
jm± and with Γ1 = A1, Γ2 = A2

(resp. Γ1 = B1, Γ2 = B2) for v odd and 	 = 4q + 1 (resp.
	 = 4q + 3). The same rules apply for the special cases
considered in equations (122–124) with (122) replaced by

−Ej = �ω̃s(2j + 1) − �
λ̃z

2
j. (132)

All other cases λ̃α = ±λ̃β , λ̃γ �= 0 can be deduced from
the previous two with appropriate unitary operators so in
all cases the eigenvalues are identical. However for an easy
determination of symmetry adapted vibronic eigenstates it
is better not to choose them arbitrarily. We set (Eq. (92))

H̃
(1)
vibr = H̃

(1)
vibr(α, β, γ)

= T (α, β, γ)H̃(1)
vibr(x, y, z)T−1(α, β, γ)

= �λ̃α[(ŜxĴx ± ŜyĴy) +
λ̃γ

λ̃α

ŜzĴz ]

= �λ̃α[(ŜxĴx ± ŜyĴy) + δ̂zŜzĴz], (133)

where T (α, β, γ) is a unitary operator which performs the
change of reference configuration (x, y, z) → (α, β, γ). The
operators Ŵ± = Ŵx ± iŴy, Ŵz (Ŵ = Ŝ or Ĵ) still sat-
isfy the usual su(2) commutation rules [Ŵz , Ŵ±] = ±Ŵ±,
[Ŵ+, Ŵ−] = 2Ŵz and Ŵ 2 = W 2. The normal covariant
standard basis is replaced by (w = 1/2 or j)

|ŵ, m〉〉 = T (α, β, γ)|w, m〉〉,
Ŵz|ŵ, m〉〉 = −m|ŵ, m〉〉, .
Ŵ 2|ŵ, m〉〉 = w(w + 1)|ŵ, m〉〉. (134)

With the previous operators we have
Case (a)

+H̃0
vibr(α, β, γ)=H̃0

vib+�λ̃α

[
1
2
(Ŝ+Ĵ− + Ŝ−Ĵ+)+δ̂zŜzĴz

]

Case (b)

−H̃0
vibr(α, β, γ) = H̃0

vib+�λ̃α

[
1
2
(Ŝ+Ĵ++Ŝ−Ĵ−)+δ̂zŜzĴz

]

and the method used for (α, β, γ) = (x, y, z) applies in
terms of Ŵ±, Ŵz operators.

One may show that convenient choices are:

• for (x, y, z) → (y, z, x): case (i)

T = PR = exp
[
i
π

2
(Sy + Jy)

]
exp

[
−i

π

2
(Sz + Jz)

]

(135)
and

• for (x, y, z) → (x, z, y): case (ii)

T = PR′ = exp
[
i
π

2
(Sz + Jz)

]

× exp
[
−i

π

2
(Sy + Jy)

]
exp

[
i
π

2
(Sz + Jz)

]
(136)

and the electronic rotation amounts, within an overall
unessential phase, to a change from orientation II to ori-
entation I in case (i) and to orientation III for case (ii).
Thus the basis states (103) are replaced by:

|±̂〉〉 ̂|[v 0]j m〉〉 ≡ |[1 0] 121Erσ〉〉 ̂|[v 0]jm〉〉 in case (i)

| ̂̂±〉〉 ̂
̂|[v 0]j m〉〉 ≡ |[1 0]121Er ¯̄σ〉〉 ̂

̂|[v 0]jm〉〉 in case (ii)

where we set for the rotated vibrational parts

̂|[v 0]jm〉〉 = exp
(
i
π

2
Jy

)
exp

(
−i

π

2
Jz

)
|[v 0]jm〉〉

= eim π
2

∑

m′
d
(j)
m′m

(π

2

)
|[v 0]jm′〉〉, (137)

and

̂
̂|[v 0]jm〉〉 = exp

(
i
π

2
Jz

)
exp

(
−i

π

2
Jy

)

× exp
(
i
π

2
Jz

)
|[v 0]jm〉〉

=
∑

m′
e−i(m+m′) π

2 d
(j)
mm′

(π

2

)
|[v 0]jm′〉〉. (138)

Thus the equivalents of the eigenstates (117) in
case (a) are simply obtained with the substitu-
tions |±〉〉|[v 0]jm〉〉 → |±̂〉〉 ̂|[v 0]j m〉〉 in case (i) (or

|±〉〉|[v 0]jm〉〉 → | ̂̂±〉〉 ̂
̂|[v 0]jm〉〉 in case (ii)). The same

rules apply for case (b). The symmetry adaptation is
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then straightforward. We underline that this procedure is
preferable to a direct action of the rotation operators onto
the symmetry adapted states, for instance (120, 121), since
the R operations are not and cannot be elements of G.

For all cases considered in this section inclusion of
the bi mode amounts, within the considered order of ap-
proximation, to the replacement of �ω̃s(2j +1) = �ω̃s(v +
1) by

E0
vib = �ω̃s′

(

N − v +
1
2

)

+ �ω̃s(v + 1)

= �
(ω̃s′ + ω̃s)

2

(

N +
3
2

)

+�
(ω̃s′ − ω̃s)

2

(

N − 2v − 1
2

)

,

in equations (112, 122, 131, 132). The associated sym-
metrized vibronic eigenstates are built with

∣
∣
∣
∣N − vΓi, [1 0]

1
2
1Er, [v 0]j; Λ±, Γ ; Γevσev

〉〉

=

F
θ (Γev)

(Γi Γ ) σev
|N − vΓi〉

∣
∣
∣
∣[1 0]

1
2
1Er, [v 0]j; Λ±, Γ θ

〉〉

(139)

where Λ± = Ω± or ±Ej . In the CGC θ = σ, σ̄ or ¯̄σ
according to the case when Γ = Er (Tab. 2).

7.4.3 Eigenvalues and symmetry adapted states:
λ̃α = λ̃β = 0, λ̃γ �= 0

Finally we consider the situation in which one of the effec-
tive coupling constants is preponderant which gives three
mathematically equivalent cases. For λ̃γ = λ̃z the interac-
tion operator in equation (89)

[1−1]E(1,0A2)[1−1]
s V(1,0 A2) = SzJz = −1

2
Sz s	z,

represents the interaction between the electronic pseudo-
spin and the vibrational angular momentum of the twofold
degenerate oscillator. We thus have a zeroth order vibronic
Hamiltonian in the form

H̃0
vibr = �ω̃s′

(

N ′
s′ +

1
2

)

+ �ω̃s(Ns + 1) − �
λ̃z

2
Sz s	z.

The eigenvalues are most easily obtained if one uses elec-
tronic and vibrational functions for the s mode in the
standard u(2) ⊃ su(2) ⊃ so(2) chain:

∣
∣
∣
∣N − v Γi〉|[1 0]

1
2
me

〉〉

|[v 0]jm〉〉 ≡

|N − v Γi〉
∣
∣
∣
∣[1 0]

1
2
1Erσ̄

〉〉

|[v 0]jm〉〉,

E0
vibr = �ω̃s′

(

N − v +
1
2

)

+ �ω̃s(v + 1) + �λ̃z mem

= �
(ω̃s′ + ω̃s)

2

(

N +
3
2

)

+ �
(ω̃s′ − ω̃s)

2

(

N − 2v − 1
2

)

± �
λ̃z

2
	

2
. (140)

For each value of 	 = 4q, 4q+2, 4q+1, 4q+3 there remains
a degeneracy of two. The symmetry of these degenerate
states is obtained with the symmetry rules given in (85)
with m1 = v, m2 = 0 (j = v/2) and standard multipli-
cation rules. The associated symmetry adapted vibronic
eigenstates are given in Appendix D.3 in a form which
allows to take easily into account the neglected vibronic
terms in the Hamiltonian expansion.

The other cases λ̃α = λ̃β = 0, λ̃γ �= 0 in which the cou-
pling with one of the pseudo-spin components is strong are
solved using techniques similar to those in Section 7.4.2.
They can be seen as situations in which the contribution of
the term involving the symmetry of one active coordinate
dominates the other one.

λ̃γ = λ̃x (resp. λ̃γ = λ̃y) which corresponds to Bt = B1

(resp. Bt = B2) in equation (89) give respectively with the
same assumptions

H̃0
vibr = �ω̃s′

(

N ′
s′ +

1
2

)

+�ω̃s(Ns +1)+�λ̃xSxJx, (141)

H̃0
vibr = �ω̃s′

(

N ′
s′ +

1
2

)

+�ω̃s(Ns +1)+�λ̃ySyJy. (142)

Although the vibrational operators Jx and Jy cannot be
associated with vibrational angular momentum compo-
nents we can again take advantage of the su(2) proper-
ties to find both the spectrum and the symmetry adapted
states. With the same rotation operators as in equa-
tions (135–138) the states

|N − v Γi〉PR

∣
∣
∣
∣[1 0]

1
2
1Erσ̄〉〉|[v 0]jm

〉〉

=

|N − v Γi〉
∣
∣
∣
∣[1 0]

1
2
1Erσ

〉〉
̂|[v 0]jm〉〉 (143)

|N − v Γi〉PR′

∣
∣
∣
∣[1 0]

1
2
1Erσ̄

〉〉

|[v 0]jm〉〉 =

|N − v Γi〉
∣
∣
∣
∣[1 0]

1
2
1Er ¯̄σ

〉〉
̂
̂|[v 0]jm〉〉 (144)

are unsymmetrized eigenstates of (141) and (142) respec-
tively with eigenvalues given by equation (140) with the
replacements λ̃z → λ̃x and λ̃z → λ̃y. Explicit expressions
of the symmetry adapted vibronic eigenstates are given in
Appendix D.4.

7.4.4 Correlations with previous studies

Some of our results can be related to those obtained in
a previous study of an E ⊗ e case in D4h molecules by
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Fig. 1. Vibronic energies for a E ⊗ e system in D4h (for v = 4
and v = 5) as a function of α (see text).

Hougen [27]. The approximate models discussed in Sec-
tions 7.4.1–7.4.3 neglect vibronic interaction operators in-
volving the bi mode since these are at least of degree
four in the elementary creation and annihilation opera-
tors. As a result the E ⊗ er problem is recovered by set-
ting ω̃s′ = 0 in the Hamiltonian expansions and in the
corresponding energy expressions. The associated symme-
try adapted states are obtained with the omission of the
kets |N − v(Γi)〉.

In the general case of arbitrary coupling constants the
energies, obtained through a first order perturbation cal-
culation, have been given in [27] up to v = 4. They can
be recovered from our model with equation (D.3) for the
matrix elements and equations (90, 91) with λ̃z = 0. Re-
sults for higher v values can easily be obtained since from
the outset we work in a fully symmetry adapted basis
|Ψ〉 = |[1 0]121Er; [v 0]j	Γ ; Γevσev〉〉. This is illustrated in
Figure 1 for v = 4 and v = 5. The vibronic energies have
been calculated with parameters λ̃x/2 = (cos α + sin α)

and λ̃y/2 = (cos α− sin α) in order to make the link with
previous results [27].

Special cases considered in [27] and associated with a
“Renner effect” [39] correspond to those studied in Sec-
tion 7.4.2. When λ̃x = λ̃y (λ̃x = −λ̃y) and λ̃z = 0 if we
denote jz (j′z) the eigenvalues of ∆ = Sz + Jz (Eq. (108))
(∆ = −Sz + Jz (Eq. (126))) then:

jz = −1
2
K, j′z =

1
2
K̃,

where K and K̃ are the quantum numbers used in [27]2.
Direct comparison of (112), (113), (131) with equa-
tion (11) of [27] leads to

�ω̃s = �ω

(

1 − p2

8�2ω2

)

, �λ̃x = ±2p.

We note that the energies in [27] are expressed in terms
of K and K̃; however these are no longer good quan-
tum numbers for symmetry adapted states (except for Er

ones (120, 121)): the true conserved quantum numbers
are, besides the overall symmetry labels, Ω±.

The “accidental Born-Oppenheimer” cases discussed
in the last section of [27] correspond to λ̃z = λ̃y = 0 and
λ̃z = λ̃x = 0 of Section 7.4.3. As in Section 7.3 it is a situ-
ation where a relation between the effective Hamiltonian
approach and the traditional one can be established. We
start from the untransformed vibronic Hamiltonian (23)
written in terms of dimensionless normal coordinates:

H = Ie�ωs(Ns + 1) + �λxSx(sq
(Er) × sq

(Er))(B1)

= Ie�ωs(Ns + 1) + �
λx√

2
Sx(sq

(Er)2
1 − sq

(Er)2
2 ), (145)

H = Ie�ωs(Ns + 1) + �λySy(sq
(Er) × sq

(Er))(B2)

= Ie�ωs(Ns + 1) − �
λy√

2
Sy(sq

(Er)2
¯̄1

− sq
(Er)2

¯̄2
). (146)

Equation (145) (resp. (146)) uses orientation I (resp. III)
in which the electronic operator [1−1]E(1,2B1) = Sx

(resp. [1−1]E(1,2B2) = Sy) is diagonal and correspond re-
spectively to cases (iii) (resp. (iv)) of [27] with �λx =
4
√

2f�ωs/k (resp. �λy = −4
√

2f�ωs/k) where f is the
vibronic coupling constant and k the force constant asso-
ciated with the er mode.

In order to treat both cases simultaneously we set:

sa
+
1 = sb

+(Er)
1 , sa

+
2 = sb

+(Er)
2 (Eq. (145))

sa
+
1 = sb

+(Er)
¯̄1

, sa
+
2 = sb

+(Er)
¯̄2

(Eq. (146)) (147)

where the notation for the symmetrized elementary op-
erators associated with mode er is that of [17]. Equa-
tions (145, 146) can then be written

Hα = �ωs(sa
+
1 sa1 + sa

+
2 sa2 + 1)

+ �
δα

2
√

2
Sα[(sa

+
1 + sa1)2 − (sa

+
2 + sa2)2], (148)

2 The � = 2m quantum number in [27] differs from ours
which is � = 2|m|.
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with δα = λx or δα = −λy according to the case. As shown
in [31] the eigenvalues and eigenstates may be obtained
through a unitary transformation which is a product of
two one mode generalized Bogoliubov transformations

H̃α = B1(σα)B2(σα)HB−1
2 (σα)B−1

1 (σα)

= �ωs[1 +
δα√
2ωs

σα]1/2

(

sa
+
1 sa1 +

1
2

)

+ �ωs[1 − δα√
2ωs

σα]1/2

(

sa
+
2 sa2 +

1
2

)

= �
[Ω+(σα) + Ω−(σα)]

2
(Ns + 1)

+ �
[Ω+(σα) − Ω−(σα)]

2
(sa

+
1 sa1 − sa

+
2 sa2), (149)

where

Ω±(σα) = ωs

[

1 ± δα√
2ωs

σα

]1/2

.

Within bases |n1, n2〉|±〉 the doubly degenerate eigenval-
ues are given by

En1n2 = �ω+

(

n1 +
1
2

)

+ �ω−

(

n2 +
1
2

)

= �
(ω+ + ω−)

2
(v + 1) + �

(ω+ − ω−)
2

(n1 − n2),

(150)

with v = n1 + n2 and where we set

ω+ = Ω+(+) = Ω−(−), ω− = Ω+(−) = Ω−(+).

The corresponding degenerate states are for α = x

|n1, n2〉|+〉 = ̂|[v 0]jm〉〉
∣
∣
∣
∣[1 0]

1
2
1Er1

〉〉

= [n1!n2!]−1/2(sb
+(Er)

1 )n1(sb
+(Er)

2 )n2 |0, 0〉
∣
∣
∣
∣[1 0]

1
2
1Er1

〉〉

,

|n2, n1〉|−〉 = ̂|[v 0]j − m〉〉
∣
∣
∣
∣[1 0]

1
2
1Er2

〉〉

= [n1!n2!]−1/2(sb
+(Er)

1 )n2(sb
+(Er)

2 )n1 |0, 0〉
∣
∣
∣
∣[1 0]

1
2
1Er2

〉〉

,

with j = (n1 + n2)/2 and m = (n1 − n2)/2 and for α = y

|n1, n2〉|+〉 =
̂
̂|[v 0]jm〉〉

∣
∣
∣
∣[1 0]

1
2
1Er

¯̄1
〉〉

= [n1!n2!]−1/2(sb
+(Er)

¯̄1
)n1(sb

+(Er)
¯̄2

)n2 |0, 0〉
∣
∣
∣
∣[1 0]

1
2
1Er

¯̄1
〉〉

,

|n2, n1〉|−〉 =
̂
̂|[v 0]j − m〉〉

∣
∣
∣
∣[1 0]

1
2
1Er

¯̄2
〉〉

= [n1!n2!]−1/2(sb
+(Er)

¯̄1
)n2(sb

+(Er)
¯̄2

)n1 |0, 0〉
∣
∣
∣
∣[1 0]

1
2
1Er

¯̄2
〉〉

,

where the states ̂|[v 0]jm〉〉 and
̂
̂|[v 0]jm〉〉 are those defined

in equations (137, 138). Knowing that (sa
+
1 sa1−sa

+
2 sa2) =

2Jx (resp. (sa
+
1 sa1 − sa

+
2 sa2) = 2Jy) within orientation I

(resp. orientation III) and with the property

[

1 ± δα√
2ωs

σα

]1/2

=
1
2

{[

(1 +
δα√
2ωs

)1/2+(1− δα√
2ωs

)1/2

]

± σα

[(

1 +
δα√
2ωs

)1/2

−
(

1 − δα√
2ωs

)1/2]}

,

straightforward identification of equations (141–149) leads
for α = x to:

ω̃s =
ω+ + ω−

2
=

ωs

2

[(

1+
λx√
2ωs

)1/2

+
(

1− λx√
2ωs

)1/2]

,

λ̃x

4
=

ω+−ω−
2

=
ωs

2

[(

1 +
λx√
2ωs

)1/2

−
(

1− λx√
2ωs

)1/2]

.

Likewise for α = y with equations (142)-(149) the corre-
lation is given by the preceding equation with the substi-
tutions λ̃x → λ̃y and λx → −λy. Also with equation (150)
and equation (14) of [27] we find:

ω̃s =
ωs

2

{(

1 +
4f

k

) 1
2

+
(

1 − 4f

k

) 1
2
}

,

λ̃x

4
=

ωs

2

{(

1 +
4f

k

) 1
2

−
(

1 − 4f

k

) 1
2
}

, (151)

and ω̃sλ̃x = ω2
+ − ω2− =

√
2λxωs.

The correlation between eigenvectors of
H̃0

vibr (141, 142) and those of H (145, 146) is ob-
tained with the expressions for the Bi(σα) unitary
operators given in [31]:

|Ψ̃n1n2+〉 = B−1
1 (σα)B−1

2 (σα)|n1, n2〉|+〉,
|Ψ̃n1n2−〉 = B−1

1 (σα)B−1
2 (σα)|n2, n1〉|−〉,

are eigenstates of H (145, 146) with eigenvalues (150).
Various expressions can be given for these states; in par-
ticular they can be expressed in terms of generalized bo-
son operators obtained from the initial ones through the
Bogoliubov transformation:

sc
+
1 (σα) =

1
2

{[

κ+(σα) − 1
κ+(σα)

]

eiφ1
sa1

+
[

κ+(σα) +
1

κ+(σα)

]

eiφ1
sa

+
1

}

,

sc
+
2 (σα) =

1
2

{[

κ−(σα) − 1
κ−(σα)

]

eiφ2
sa2

+
[

κ−(σα) +
1

κ−(σα)

]

eiφ2
sa

+
2

}

, (152)
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with κ2
±(σα) = [1 ± δασα/

√
2ωs]1/2, which gives

|Ψ̃n1n2+〉 = |n1, n2〉+|+〉

= (n1!n2!)−1/2[sc+
1 (+)]n1 [sc+

2 (+)]n2 |0, 0〉+|+〉,

|Ψ̃n1n2−〉 = |n2n1〉−|−〉

= (n1!n2!)−1/2[sc+
1 (−)]n2 [sc+

2 (−)]n1 |0, 0〉−|−〉.
(153)

We underline that in each subspace we have two different
vibrational ground states, made of two harmonic oscillator
squeezed vacuum states [37,38], and given in terms of the
initial ones by

|0, 0〉+ =N+N− exp
[

−ξ+

2
(sa

+
1 )2

]

exp
[

−ξ−
2

(sa
+
2 )2

]

|0, 0〉,

|0, 0〉−=N+N− exp
[

−ξ−
2

(sa
+
1 )2

]

exp
[

−ξ+

2
(sa

+
2 )2

]

|0, 0〉,

where, setting κ+(+) = κ−(−) = κ+, κ+(−) = κ−(+) =
κ−, we have

ξ+ =
κ2

+ − 1
κ2

+ + 1
, ξ− =

κ2
− − 1

κ2− + 1
,

and

N+N− = exp
[
i(φ1 + φ2)

2

] [
4κ+κ−

(κ2
+ + 1)(κ2− + 1)

]1/2

= exp
[
i(φ1 + φ2)

2

]

(1 − ξ2
+)1/4(1 − ξ2

−)1/4.

Also in order to take into account interactions with other
vibrational modes or molecular rotation care should be
taken since the sets {ci(±), c+

i (±)} are not independent
as it appears from equation (152). For completeness we
give below the symmetry adapted eigenstates

∣
∣
∣
∣[1 0]

1
2
1Er; n1n2; Γevσev

〉〉

of H (145, 146) obtained with the matrices for the ir-
rep Er [17] in orientation I when α = x and orientation III
when α = y. The corresponding realization of the elemen-
tary boson operators is in each case that given in equa-
tion (147). All phases have been settled so that upon time
reversal

K
∣
∣
∣
∣[1 0]

1
2
1Er; n1n2; Γevσev

〉〉

=
∣
∣
∣
∣[1 0]

1
2
1Er; n1n2; Γevσev

〉〉

.

Also we set below

eiθ1 = exp
[

−i

(

n1 +
1
2

)

φ1

]

exp
[

−i

(

n2 +
1
2

)

φ2

]

,

eiθ2 = exp
[

−i

(

n2 +
1
2

)

φ1

]

exp
[

−i

(

n1 +
1
2

)

φ2

]

.

• α = x
∣
∣
∣
∣[1 0]

1
2
1Er; n1n2; Erσ

〉〉

= eiθ1 |Ψ̃n1n2+〉
∣
∣
∣
∣[1 0]

1
2
1Er; n1n2; Er − σ

〉〉

= eiθ2 |Ψ̃n1n2−〉 (154)

with (σ,−σ) = (1, 2) (resp. (σ,−σ) = (2, 1)) for n1 and
n2 even (resp. odd).
∣
∣
∣
∣[1 0]

1
2
1Er; n1n2; Γ1

〉〉

=
eiθ1

√
2

(eiθ1 |Ψ̃n1n2+〉+eiθ2|Ψ̃n1n2−〉)
∣
∣
∣
∣[1 0]

1
2
1Er; n1n2; Γ2

〉〉

=
eiθ1

√
2

(eiθ1 |Ψ̃n1n2+〉−eiθ2|Ψ̃n1n2−〉)
(155)

with (Γ1, Γ2) = (B2, A2) (resp. (Γ1, Γ2) = (A1, B1)) for n1

even and n2 odd (resp. n1 odd and n2 even).
• α = y
All results for this case are deduced from those in equa-
tions (154, 155) with the substitutions Erσ → Er ¯̄σ and
(Γ1, Γ2) = (B1, A2) (resp. (Γ1, Γ2) = (A1, B2)) for n1 even
and n2 odd (resp. n1 odd and n2 even).

8 Conclusion

Through several examples we showed that the effective
Hamiltonian approach combined with Lie algebraic meth-
ods allows to obtain exact solutions for various zeroth or-
der models to which additional higher order interaction
terms can next be added. Also the usual technique of pro-
jection of the eigenvalue equation onto separate pseudo-
spin subspaces is completely avoided.

In the following paper we will consider E ⊗ e JT dy-
namical systems for cases where [E × E] is of the A1 + E
type and the closely related G′⊗ e case in cubic molecules.
Clearly many other JT molecular systems can be consid-
ered with a similar approach, a natural extension of our
work being kE terms.

Appendix A: Vibrational states and operators

Vibrational operators as defined in equation (14) are built
below taking into account that for the molecules consid-
ered in this paper we can restrict to oscillators with di-
mension at most equal to two. This covers the groups
Dn, Cnv, Dnd (n even) in G(I); Dnh, Dnd (n odd) in G(II);
groups in G(III) are somewhat special since their full vi-
brational representation admits only Er (or Erα) modes
with r = 1. In view of our applications, detailed proper-
ties are given for operators involving at most two modes
in (14).

Results below are first given assuming matrices for the
irrep of type E in real form (orientation I of [17]). This
implies that all CGC may be taken real. We also use:

(−1)A2 = −1, (−1)B1 = (−1)B2 = 1
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since A2 is odd and B1, B2 even. For E symmetry we
choose in all cases (−1)E = 1. The modifications to bring
when we consider orientations II or III of [17] are indicated
in Section A.3 of this appendix.

A.1 One mode operators

A.1.1 Non degenerate modes gs = 1

For a non degenerate mode with symmetry C we simply
have the operator set

sX
n(Cn) = [ sX

(C)]n, (A.1)

with Cn = Γ0 for n even and Cn = C for n odd. In (A.1)
we may take for sX

(C) the normal coordinates sQ
(C)

or their conjugate momentum sP
(C), their dimensionless

counterparts sq
(C), sp

(C), annihilation sa
(C) or creation

sa
+(C) operators for mode s. We may build Hermitian

operators in normal form with:

ε
sV

C1C2(Cv)
{n1}{n2} = iε{[ sa

+n1(C1) × sa
n2(C2)](Cv)

+ (−1)ε[ sa
+n2(C2) × sa

n1(C1)](Cv)}. (A.2)

ε = 0 (or 1) gives the behavior upon time reversal + (or
−). In particular when n1 = n2 = n we have the scalar
operators

0
sV

CnCn(Γ0)
{n}{n} = 2[ sa

+n(Cn) × sa
n(Cn)](Γ0)

= 2N [n]
s = 2Ns(Ns − 1) · · · (Ns − n + 1).

The space of states is spanned by the kets

|v Γ 〉 = (v!)−
1
2 [ sa

+(C)]v|0〉,
and for the matrix elements we have

〈v′ Γ ′| sa
+n(Cn)|v Γ 〉 = 〈v Γ | sa

n(Cn)|v′ Γ ′〉

= [Γ ′]−
1
2 F

(Γ ′)∗
(Cn Γ )

(v′ Γ ′|| sa
+n(Cn)||v Γ )

= δΓ ′,Cn×Γ

[
(v + n)!

v!

] 1
2

δv′,v+n, (A.3)

from which those of the general operators (A.2) are de-
duced:

〈v′ Γ ′|εsV C1C2(Cv)
{n1}{n2} |v Γ 〉 = (v′ Γ ′||εsV C1C2(Cv)

n1n2
||v Γ )

× iεδΓ ′,Cv×Γ

{
[v!(v + n1 − n2)!]

1
2

(v − n2)!
δv′,v+n1−n2

+(−1)ε [v!(v − n1 + n2)!]
1
2

(v − n1)!
δv′,v−n1+n2

}

. (A.4)

In equations (A.3, A.4) we took into account that all CGC
can be chosen equal to one.

A.1.2 Doubly degenerate modes gs = 2

For a vibrational mode with symmetry Ek in G we take the
operators introduced previously [17] for the chains u(2) ⊃
su(2) ⊃ so(2) or u(2) ⊃ su∗(2) ⊃ G:

[m1 −m2]
s V(j)

m or [m1 −m2]
s V(j)

	Γσ = [m1 −m2]
s V(j,	Γ )

σ . (A.5)

Depending on the chain used the space of states is spanned
by the kets

|[v 0]jm〉〉 or |[v 0]j 	Γσ〉〉,

and all matrix elements and properties have been given
in [17].

A.2 Two mode operators

In our applications of Sections 6 and 7 the vibronic terms
involve at most two mode operators. These are detailed
below for various possible cases.

A.2.1 gs = 1 and gs′ = 1

Depending upon the case at hand we have several possi-
bilities. For operators based on coordinates and momenta
we can simply take (s �= s′) (Eq. (A.1)):

ss′V C1C2(Cv)
n1n2

= [sXn1(C1) × s′Y n2(C2)](Cv), (A.6)

whose behavior upon time reversal is determined by the
choice for X and Y and the powers ni. We may also per-
form a coupling of the operators (A.2) built from creation
and annihilation operators:

ε+ε′
ss′ V

{CiC
′
i}(Cv)

{nin′
i} = [ ε

sV
C1C2(C12)
{n1}{n2} × ε′

s′V
C′

1C′
2(C

′
12)

{n′
1}{n′

2} ](Cv),

but the latter are not directly in normal form and not
convenient within a polyad scheme. If we define [19,40]

ss′A+C1C2(C12)
n1n2

= [ sa
+n1(C1) × s′a+n2(C2)](C12),

and an identical expression in terms of annihilation oper-
ators we obtain normal ordered Hermitian operators with

ε
ss′V

{Ci}{C′
i}(Cv)

{ni}{n′
i} =iε{[ss′A+C1C2(C12)

n1n2
× ss′A

C′
1C′

2(C
′
12)

n′
1n′

2
](Cv)

+ (−1)ε′ [ss′A
+C′

1C′
2(C

′
12)

n′
1n′

2
× ss′AC1C2(C12)

n1n2
](Cv)} (A.7)

where ε′ = ε + C12 + C′
12 + Cv. All matrix elements can

be computed from those in equations (A.3) or (A.4).



380 The European Physical Journal D

A.2.2 gs = 1 and gs′ = 2

Likewise we mainly have two solutions. Firstly through a
coupling of one mode operators defined in (A.2, A.5):

µ
ss′V

C1C2(C12)j	C′
12(Cv)

n1n2,m1m2 =

iε
′{[εsV C1C2(C12)

{n1}{n2} × [m1 −m2]
s′ V(j,	C′

12)](Cv)

+ (−1)ε′ [εsV
C1C2(C12)
n1n2

× [m2 −m1]
s′ V(j,	C′

12)](Cv)}, (A.8)

with µ = ε′+ε+j−	/2, secondly with a construction simi-
lar to that of the previous section which leads to operators
in normal form. We set

ss′A+C1,j	C2(C12)
n1n2

= [sa+n1(C1) × [n2 0]
s′ V (j,	C2)](C12),

and

ss′AC1,j	C2(C12)
n1n2

= [san1(C1) × [0−n2]
s′ V (j,	C2)](C12),

from which we build:

µ
ss′V

{Ciji	i}{C′
ij

′
i	

′
i}(Cv)

{ni}{n′
i} =

iε{[ss′A+C1,j	C2(C12)
n1n2

× ss′A
C′

1,j′	′C′
2(C

′
12)

n′
1n′

2
](Cv)

+ (−1)ε′ [ss′A
+C′

1,j′	′C′
2(C

′
12)

n′
1n′

2
× ss′AC1,j	C2(C12)

n1n2
](Cv)},
(A.9)

with µ = ε+j−	/2+j′−	′/2 and ε′ = ε+C12 +C′
12 +Cv.

A.2.3 gs = 2 and gs′ = 2

Similarly from the coupling of one mode operators (A.5)
we determine Hermitian operators (not in normal form):

µ
ss′V

j	Γ,j′	′Γ ′(Cv)
m1m2,m′

1m′
2

=

iε{[ [m1 −m2]
s V(j,	Γ ) × [m′

1 −m′
2]

s′ V(j′,	′Γ ′)](Cv)

+ (−1)ε[ [m2 −m1]
s V(j,	Γ ) × [m′

2 −m′
1]

s′ V(j′,	′Γ ′)](Cv)},
(A.10)

with µ = ε + j − 	/2 + j′ − 	′/2.
We can also define

ss′A+j1	1C1,j2	2C2(C12)
n1n2

=

[ [n1 0]
s V (j1,	1C1) × [n2 0]

s′ V (j2,	2C2)](C12),

and

ss′Aj1	1C1,j2	2C2(C12)
n1n2

=

[ [0−n1]
s V (j1,	1C1) × [0−n2]

s′ V (j2,	2C2)](C12),

from which we built setting ji	iCi = j1	1C1, j2	2C2:

µ
ss′V

{ji	iCi}{j′i	
′
iC

′
i}(Cv)

{ni}{n′
i} =

iε{[ss′A+ji	iCi(C12)
n1n2

× ss′A
j′i	

′
iC

′
i(C

′
12)

n′
1n′

2
](Cv)

+ (−1)ε′ [ss′A
+j′i	

′
iC

′
i(C

′
12)

n′
1n′

2
× ss′Aji	iCi(C12)

n1n2
](Cv)} (A.11)

with µ = ε + j1 − 	1/2 + j′1 − 	′1/2 + j2 − 	2/2 + j′2 − 	′2/2
and ε′ = ε + C12 + C′

12 + Cv.
We note that when other degrees of freedom are in-

volved, the previously defined coupling schemes may be
modified.

A.3 Changing the orientation of an irreducible
representation

In a general way a change of orientation σ → κ of an
irrep C is performed through a unitary transformation:

T (C)
κ = (C)Uσ

κ T (C)
σ ,

where the quantities denoted T may be tensor operators
or kets. When the transformation (C)U is determined the
modification rules to be applied to the new symmetry
adapted quantities are easily obtained. For instance start-
ing from an Hermitian operator we have:

T (C)†
κ = (C)Uσ∗

κ T (C)
σ ,

and under time reversal the new quantities transform as

KtT
(C)
κ K−1

t = (C)Uσ∗
κ KtT

(C)
σ K−1

t ,

For the cases considered in the paper, only E type irrep
are involved, and we have from [17]:

(C)Uσ∗
σ̄ = (C)Uσ

−σ̄,

when going from orientation I to orientation II (κ = σ̄)
and

(C)Uσ∗
¯̄σ = (C)Uσ

¯̄σ

when going from orientation I to orientation III (κ = ¯̄σ).
So the modification rules are particularly simple to apply.

A.4 Coupling coefficients

For the groups and irreducible representations consid-
ered in our applications, Sections 6 and 7, we give in
Table 2 non-zero 3 − Γ coefficients satisfying the usual
symmetry properties with respect to permutation of their
columns [41,42] with

(−1)A1 = (−1)B1 = (−1)B2 = (−1)Er = 1, (−1)A2 = −1.

The associated CGC are deduced, for these cases, with

F
σ1 σ2 (Γ3)
(Γ1 Γ2) σ3

= [Γ3]1/2

(
Γ3

σ3 σ′
3

)

F
σ1 σ2 σ′

3

(Γ1 Γ2 Γ3)
,
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Table 2. 3 − Γ coefficients in various orientations.

Γ1 Γ2 Γ3 σ1 σ2 σ3 3 − Γ Γ1 Γ2 Γ3 σ1 σ2 σ3 3 − Γ

Er Er A1 1 1 1/
√

2 Er Er B1 1 1 1/
√

2

I Er Er A1 2 2 1/
√

2 Er Er B1 2 2 −1/
√

2

Er Er A2 1 2 1/
√

2 Er Er B2 1 2 1/
√

2

Γ1 Γ2 Γ3 σ̄1 σ̄2 σ̄3 3Γ − σ Γ1 Γ2 Γ3 σ̄1 σ̄2 σ̄3 3Γ − σ

Er Er A1 1̄ 2̄ 1/
√

2 Er Er B1 2̄ 2̄ −1/
√

2

II Er Er A2 1̄ 2̄ i/
√

2 Er Er B2 1̄ 1̄ i/
√

2

Er Er B1 1̄ 1̄ −1/
√

2 Er Er B2 2̄ 2̄ −i/
√

2

Γ1 Γ2 Γ3 ¯̄σ1 ¯̄σ2 ¯̄σ3 3Γ − σ Γ1 Γ2 Γ3 ¯̄σ1 ¯̄σ2 ¯̄σ3 3Γ − σ

Er Er A1
¯̄1 ¯̄1 1/

√
2 Er Er B1

¯̄1 ¯̄2 1/
√

2

III Er Er A1
¯̄2 ¯̄2 1/

√
2 Er Er B2

¯̄1 ¯̄1 −1/
√

2

Er Er A2
¯̄1 ¯̄2 1/

√
2 Er Er B2

¯̄2 ¯̄2 1/
√

2

where the 1−Γ symbol reduces to the identity except for
Er irrep in orientation II for which it is

(
Er

σ̄ σ̄′

)

= δσ̄′,−σ̄,

with −1̄ = 2̄ and −2̄ = 1̄. In all orientations we have
(i = 1, 2):

F (Ai Ai A1)
= F (Bi Bi A1)

= F (B1 B2 A2)
= 1.

Appendix B: Effective Hamiltonian
for E ⊗ (b1 + b2)

The expansion (32) is restricted to terms whose total de-
gree in annihilation and creation operators is at most
equals to four. The indices s1, s2 refer respectively to
the b1 and b2 active modes and the operators are those
defined in equations (A.2, A.7).

H̃vibr = Ie

{
∑

n=0,1,2

s1 t̃
C1C1(A1)
{n1}{n1}

0
s1

V
C1C1(A1)
{n1}{n1}

+ s2 t̃
C2C2(A1)
{n2}{n2}

0
s2

V
C2C2(A1)
{n2}{n2}

+ ss′ t̃
A1A1 A1A1(A1)
{20}{02}

0
s1s2

V
A1A1 A1A1(A1)
{20}{02}

+ s1s2 t̃
B1B2 B1B2(A1)
{11}{11}

0
s1s2

V
B1B2 B1B2(A1)
{11}{11}

}

+ [1−1]E(1,0A2)

{

s1s2 t̃
B1A1 A1B2(A2)
{10}{01}

1
s1s2

V
B1A1 A1B2(A2)
{10}{01}

+ s1s2 t̃
A1A1 B1B2(A2)
{20}{11}

1
s1s2

V
A1A1 B1B2(A2)
{20}{11}

+ s1s2 t̃
A1A1 B1B2(A2)
{02}{11}

1
s1s2

V
A1A1 B1B2(A2)
{02}{11}

}

Appendix C: Vibronic Hamiltonian
for E ⊗ (bi + aj)

C.1 Restricted expansion for the effective Hamiltonian

The expansion (68) is restricted to terms whose total de-
gree in annihilation and creation operators is at most
equals to four. The indices s, s′ refer respectively to the bi

and aj modes.

H̃vibr = Ie

{
∑

n=0,1,2

st̃
CiCi(A1)
{ni}{ni}

0
sV

CiCi(A1)
{ni}{ni}

+ s′ t̃
CjCj(A1)

{nj}{nj}
0
s′V

CjCj(A1)

{nj}{nj}

+ ss′ t̃
A1A1 A1A1(A1)
{20}{02}

0
ss′V

A1A1 A1A1(A1)
{20}{02}

+ ss′ t̃
BiAj BiAj(A1)

{11}{11}
0

ss′V
BiAj BiAj(A1)

{11}{11}

}

+[1−1]E(1,2Bk)

{

ss′ t̃
BiA1 A1Aj(Bk)

{10}{01}
0

ss′V
BiA1 A1Aj(Bk)

{10}{01}

+ ss′ t̃
A1A1 BiAj(Bk)

{20}{11}
0

ss′V
A1A1 BiAj(Bk)

{20}{11}

+ ss′ t̃
A1A1 BiAj(Bk)

{02}{11}
0

ss′V
A1A1 BiAj(Bk)

{02}{11}

}

C.2 Matrix elements in the coupled basis

Within the coupled basis

∣
∣
∣
∣[1 0]

1
2
1Er, (vΓi, N − vΓj)Γv; Erσev

〉

≡ |{γev}Ψ (Er)
σev

〉,
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the matrix elements of the zeroth-order model in equa-
tions (69, 70) are given within the polyad N by

〈{γ′
ev}Ψ (Er)

σ′
ev
|H̃(0)

vibr |{γev}Ψ (Er)
σev

〉 = δσev ,σ′
ev

×
[[

�λ̃0 + �ω̃s

(

v +
1
2

)

+ �ω̃s′

(

N − v +
1
2

)]

δv′,v

+ �(−1)k+1λ̃
(−1)Γv

√
2

{
Γ ′

v′ Er Er

Er Γv Bk

}





Bi Γi Γ ′
i

Aj Γj Γ ′
j

Bk Γv Γ ′
v′






×
{

[(v + 1)(N − v)]
1
2 δv′,v+1 + [v(N − v + 1)]

1
2 δv′,v−1

}]
.

(C.1)

Most selection rules are contained in the 6−C and 9−C
symbols of G. The usual rule σev = σ′

ev linked to the A1

symmetry of Hamiltonian terms implies that the matrix
to diagonalize is of dimension N + 1.

C.3 Symmetry adapted eigenstates for H̃
(0)
vibr

The vibronic Hamiltonians (71, 74) are respectively trans-
formed as

U(σαJβ)H̃(0)
vibrU(σαJβ)−1 = U H̃

(0)
vibr

= �λ̃0 + �
(ω̃s + ω̃s′)

2
(N + 1) + �Ω(σα)Jz ,

U ′(σαJ ′
β)H̃(0)

vibrU
′(σαJ ′

β)−1 = U ′
H̃

′(0)
vibr

= �λ̃0 + �
(ω̃s + ω̃s′)

2
(N + 1) + �Ω(σα)J ′

z , (C.2)

with
Ω(σα) = [λ̃2 + (ω̃s − ω̃s′)2]1/2.

The operator U(σαJβ) is given by

U(σαJβ) = exp
[
(Ω − ω0)

λ̃
σαJ+

]

exp
[

ln
(

2Ω

Ω + ω0

)

Jz

]

× exp
[

− (Ω − ω0)
λ̃

σαJ−

]

= exp[2iξσαJy], (C.3)

where we set ω0 = ω̃s − ω̃s′ and with

tan ξ =
(Ω − ω0)

λ̃
, cos ξ =

[
Ω + ω0

2Ω

]1/2

.

For the U ′(σαJ ′
β) operator we have

U ′(σαJ ′
β) = exp

[
(Ω − λ̃ σα)

ω0
J ′

+

]

exp
[

ln
(

2Ω

Ω + λ̃ σα

)

J ′
z

]

× exp

[

− (Ω − λ̃ σα)
ω0

J ′
−

]

= exp[2iξ′J ′
y], (C.4)

with

tan ξ′ =
Ω − λ̃ σα

ω0
, cos ξ′ =

[
Ω + λ̃ σα

2Ω

]1/2

.

Eigenstates for the Hamiltonian H̃0
vibr (70) are obtained

starting from the vibronic bases
∣
∣
∣
∣[1 0]

1
2
1Erσe

〉〉

|[N 0]jm(Γv)〉〉,
∣
∣
∣
∣[1 0]

1
2
1Erσe

〉〉

|[N 0]jm〉〉′,

with σe = 1, 2 (orientation I) when Bi × Aj = Bk = B1

and σe = ¯̄1, ¯̄2 (orientation III) when Bi × Aj = Bk =
B2. |[N 0]jm(Γv)〉〉 (resp. |[N 0]jm〉〉′) are u(2) ⊃ su(2) ⊃
so(2) covariant states built with the sets a+

1 = sa
+(Bi),

a+
2 = s′a+(Aj) (Eq. (39))(resp. c+

1 , c+
2 (Eq. (43))).

From the expressions of the U(σαJβ) and U ′(σαJ ′
β)

operators (C.3, C.4) we obtain unsymmetrized eigenstates
of H̃

(0)
vibr :

∣
∣
∣
∣[1 0]

1
2
1Erσe

〉〉

|[N 0]jm(θe)〉〉

= U(σαJβ)−1

∣
∣
∣
∣[1 0]

1
2
1Erσe

〉〉

|[N 0]jm(Γv)〉〉

= exp[−2iξσαJy]
∣
∣
∣
∣[1 0]

1
2
1Erσe

〉〉

|[N 0]jm(Γv)〉〉

=
∑

m′
d
(j)
mm′(2ξ(−1)σe+1)

∣
∣
∣
∣[1 0]

1
2
1Erσe

〉〉

|[N 0]jm′(Γ ′
v)〉〉,

(C.5)

with θe = θ1 (θe = θ2 = −θ1) when σe = 1 or σe = ¯̄1
(σe = 2 or σe = ¯̄2) and

cos θe =
ω0

Ω
, sin θe =

λ̃

Ω
(−1)σe+1.

Likewise from U ′(σzJ
′
α) we obtain the eigenstates in the

form:
∣
∣
∣
∣[1 0]

1
2
1Erσe

〉〉

|[N 0]jm(θ′e)〉〉′

= U ′(σαJ ′
β)−1

∣
∣
∣
∣[1 0]

1
2
1Erσe

〉〉

|[N 0]jm〉〉′

= exp[−2iξ′J ′
y]
∣
∣
∣
∣[1 0]

1
2
1Erσe

〉〉

|[N 0]jm〉〉′

=
∑

m′
d
(j)
mm′(2ξ′(σe))

∣
∣
∣
∣[1 0]

1
2
1Erσe

〉〉

|[N 0]jm′〉〉′, (C.6)

with θ′e = θ′1 (θ′e = θ′2 = π − θ′1) when σe = 1̄ or σe = ¯̄1
(σe = 2̄ or σe = ¯̄2) and

cos θ′e =
λ̃

Ω
(−1)σe+1, sin θ′e =

ω0

Ω
.
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Next symmetrized vibronic eigenstates are obtained
from (C.5, C.6) with the method presented in [17]:

∣
∣
∣
∣[1 0]

1
2
1Er, [N 0]jm(θe); Erσev

〉〉

=

eiϕ(τ)

∣
∣
∣
∣[1 0]

1
2
1Erσe〉〉|[N 0]jm(θe)

〉〉

, (C.7)

or
∣
∣
∣
∣[1 0]

1
2
1Er, [N 0]jm(θ′e); Erσev

〉〉′
=

eiϕ′(τ ′)
∣
∣
∣
∣[1 0]

1
2
1Erσe〉〉|[N 0]jm(θ′e)

〉〉′
. (C.8)

The phase factors in (C.7) are given below for the various
cases:

(Bi, Aj) j θe σe σev eiϕ(τ)

(B1, A1) integer and θ1 1 1 (−1)j−m

half-integer −θ1 2 2 1
(B2, A2) integer θ1 1 1 (−1)j−m

−θ1 2 2 1
half-integer θ1 1 2 −1

−θ1 2 1 (−1)j−m

(B2, A1) integer and θ1
¯̄1 ¯̄1 (−1)j−m

half-integer −θ1
¯̄2 ¯̄2 1

(B1, A2) integer θ1
¯̄1 ¯̄1 (−1)j−m

−θ1
¯̄2 ¯̄2 1

half-integer θ1
¯̄1 ¯̄2 −1

−θ1
¯̄2 ¯̄1 (−1)j−m

(C.9)

For the phase factors in (C.8) we have eiϕ′(τ ′) = eiϕ(τ) as
given in (C.9) with the substitutions θ1 → θ′1 and −θ1 →
π − θ′1.

Appendix D: Vibronic Hamiltonian
for Er ⊗ (bi + er)

D.1 Restricted expansion for the effective Hamiltonian

The expansion (86) limited to terms with ni + nj = n′
i +

n′
j ≤ 2 writes H̃vibr = H̃vib + H̃ ′

vibr with:

H̃vib = Ie

{

Iv +
∑

n=1,2

s′ t̃
CiCi(A1)
{ni}{ni}

0
s′V

CiCi(A1)
{ni}{ni}

+ st̃
0,0A1(A1)
{1}{1}

[1−1]
s V(0,0 A1) + st̃

0,0A1(A1)
{2}{2}

[2−2]
s V(0,0 A1)

+ st̃
2,0A1(A1)
{2}{2}

[2−2]
s V(2,0 A1) + st̃

2,4A1(A1)
{2}{2}

[2−2]
s V(2,4 A1)

+ s′st̃
A100A1 A110A1(A1)
{20}{02}

0
s′sV

A100A1 A110A1(A1)
{20}{02}

+ s′st̃
Bi

1
21Ek Bi

1
21Ek(A1)

{11}{11}
0

s′sV
Bi

1
21Ek Bi

1
21Ek(A1)

{11}{11}

}

H̃ ′
vibr = [1−1]E(1,0A2)

{

s t̃
1,0A2(A2)
{1}{1}

[1−1]
s V(1,0A2)

+ st̃
1,0A2(A2)
{2}{2}

[2−2]
s V(1,0 A2)

+ s′st̃
Bi

1
2 1Ek Bi

1
21Ek(A2)

{11}{11}
1

s′sV
Bi

1
21Ek Bi

1
21Ek(A2)

{11}{11}

}

+
∑

t=1,2

[1−1]E(1,2Bt)

{

st̃
1,2Bt(Bt)
{1}{1}

[1−1]
s V(1,2Bt)

+ st̃
1,2Bt(Bt)
{2}{2}

[2−2]
s V(1,2 Bt)

+ s′st̃
A100A1 A112Bt(Bt)
{20}{02}

0
s′sV

A100A1 A112Bt(Bt)
{20}{02}

+ s′st̃
Bi

1
2 1Ek Bi

1
21Ek(Bt)

{11}{11}
0

s′sV
Bi

1
21Ek Bi

1
21Ek(Bt)

{11}{11}

}

.

D.2 Matrix elements in the coupled basis

We give below the matrix elements for the various opera-
tors in H̃0

vibr (89) within the coupled basis

|Ψ〉 =
∣
∣
∣
∣[1 0]

1
2
1Er; (vs′Γi, [v 0]j	Γ )Γv; Γevσev

〉〉

,

using the simplified notation

Ovibr = [E(C) × [s′V (A1) × sV
(C)]](A1),

for the vibronic operators. With equations (9, 10) we
obtain

〈Ψ ′|Ovibr |Ψ〉 = δΓ ′
ev ,Γevδσ′

ev ,σevδv′
s′ ,vs′ δΓ ′

i ,Γi
δv′,v

× (−1)Γev+Γi+Γ ′
([Γv][Γ ′

v])1/2

{
Γ ′

v Er Γev

Er Γv C

}

×
{

Γ ′
v Γ ′ Γi

Γ Γv C

}(

[1 0]
1
2
1Er||E(C)||[1 0]

1
2
1Er

)

× (vs′Γi||s′V (A1)||vs′Γi)([v 0]j	′Γ ′||sV (C)||[v 0]j	Γ ).
(D.1)

Special cases

• E(C) = I
(A1)
e , sV

(C) = sI
(A1) that is for operators in-

volving the bi mode only we have (Eq. (A.4)), omitting
the Kronecker symbols

〈Ψ ′|Ovibr |Ψ〉 = 〈Ψ ′| 0
sV

CiCi(A1)
{ni}{ni} |Ψ〉

= (vs′Γi||s′V (A1)||vs′Γi) = 2
vs′ !

(vs′ − n)!
.

• E(C) = I
(A1)
e , s′V (A1) = s′I(A1) that is for operators

involving the er mode only:

〈Ψ ′|Ovibr |Ψ〉 = 〈Ψ ′|[k −k]
s V(kv)

	vCσ|Ψ〉
=

1
[Γ ]1/2

([v 0]j	′Γ ||sV (A1)||[v 0]j	Γ ),

where the reduced matrix elements, as well as those of
the electronic operators E(C), can be obtained from the
results in [17].
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• s′V (C) = s′I(A1) that is for vibronic operators involved
in (91)

〈Ψ ′|Ovibr |Ψ〉 = δΓ ′
ev ,Γevδσ′

ev ,σevδv′
s′ ,vs′ δΓ ′

i ,Γi
δv′,v

× (−1)Γev+Γ ′
([Γv][Γ ′

v])1/2

{
Γ ′

v Er Γev

Er Γv C

}{
Γ ′

v Γ ′ Γi

Γ Γv C

}

×
(

[1 0]
1
2
1Er||E(C)||[1 0]

1
2
1Er

)

× ([v 0]j	′Γ ′||sV (C)||[v 0]j	Γ ). (D.2)

We note that in the special case Γi = A1 the preceding
equation reduces to:

〈Ψ ′|Ovibr |Ψ〉 = δΓ ′
ev ,Γevδσ′

ev ,σevδv′
s′ ,vs′ δv′,vδΓ,ΓvδΓ ′,Γ ′

v

× (−1)Γev+Γ+C

{
Γ ′ Er Γev

Er Γ C

}

×
(

[1 0]
1
2
1Er||E(C)||[1 0]

1
2
1Er

)

× ([v 0]j	′Γ ′||sV (C)||[v 0]j	Γ ). (D.3)

This gives, within the same assumptions, all matrix ele-
ments for an Er ⊗ er case with basis states of the form
|Ψ〉 = |[1 0]121Er; [v 0]j	Γ ; Γevσev〉〉.

D.3 Pseudo-spin vibration interaction

The operator considered as dominant in Section 7.4.3
writes

st̃
1,0A2(A2)
{11}

[1−1]E(1,0A2)[1−1]
s V(1,0 A2) =

�λ̃zSzJz = −�
λ̃z

2
Sz s	z.

Its eigenvalues in the unsymmetrized standard basis are
obtained from:

SzJz

∣
∣
∣
∣[1 0]

1
2
me, [v 0]jm

〉〉

= mem

∣
∣
∣
∣[1 0]

1
2
me, [v 0]jm

〉〉

= ± 	

4

∣
∣
∣
∣[1 0]

1
2
me, [v 0]jm

〉〉

.

The space of states can thus be divided into two subspaces
H+ and H− associated respectively with eigenvalues ±	/4
and stable under the action of the elements of the molecu-
lar point symmetry group G. For the basis vectors in H+

we set:
∣
∣
∣
∣[1 0]

1
2

1
2
, [v 0]j

	

2

〉〉

= (+)ϕ+,

∣
∣
∣
∣[1 0]

1
2
− 1

2
, [v 0]j − 	

2

〉〉

= (+)ϕ−,

and for those in H−
∣
∣
∣
∣[1 0]

1
2

1
2
, [v 0]j − 	

2

〉〉

= (−)ϕ+,

∣
∣
∣
∣[1 0]

1
2
− 1

2
, [v 0]j

	

2

〉〉

= (−)ϕ−,

and we note that under time-reversal we have K (+)ϕ+ =
(+)ϕ− and K (−)ϕ+ = (−)ϕ−. Using the methods described
in [17] we build the symmetry adapted states in orienta-
tion II listed below in the form

∣
∣
∣
∣[1 0]

1
2
1Er, [v 0]j	; κ, Γ σ̄

〉〉

,

where κ = ±1 is associated with the eigenvalues ±	/4
of SzJz. All phases have been settled so that under time
reversal

K
∣
∣
∣
∣[1 0]

1
2
Er, [v 0]j	; κ, Γ σ̄

〉〉

=
∣
∣
∣
∣[1 0]

1
2
Er, [v 0]j	; κ, Γ − σ̄

〉〉

• 	 = 4q, 4q + 2

|[1 0]121Er, [v 0]j	; +, Erσ̄〉〉 = iv(+)ϕ+

|[1 0]121Er, [v 0]j	; +, Er − σ̄〉〉 = iv(+)ϕ−
|[1 0]121Er, [v 0]j	;−, Erσ̄〉〉 = iv(−)ϕ+

|[1 0]121Er, [v 0]j	;−, Er − σ̄〉〉 = iv(−)ϕ−

(D.4)

where (σ̄,−σ̄) = (1̄, 2̄) for 	 = 4q and (σ̄,−σ̄) = (2̄, 1̄) for
	 = 4q + 2. In the special case 	 = 0 only states + or − in
equation (D.4) are retained.

• 	 = 4q + 1, 4q + 3

|[1 0]121Er, [v 0]j	; +, Γ1〉〉 =
iv+1

√
2

((+)ϕ+ + (+)ϕ−)

|[1 0]121Er, [v 0]j	; +, Γ2〉〉 =
iv√
2
((+)ϕ+ − (+)ϕ−)

|[1 0]121Er, [v 0]j	;−, Γ ′
1〉〉 =

iv+1

√
2

((−)ϕ+ + (−)ϕ+)

|[1 0]121Er, [v 0]j	;−, Γ ′
2〉〉 =

iv√
2
((−)ϕ+ − (−)ϕ+)

with Γ1, Γ2, Γ
′
1, Γ

′
2 = B1, B2, A1, A2 for 	 = 4q + 1 and

A1, A2, B1, B2 for 	 = 4q + 3.
The complete vibronic eigenbasis, including states as-

sociated with the bi mode, is obtained with
∣
∣
∣
∣N − v Γi; [1 0]

1
2
1Er, [v 0]j	; κ, Γ ; Γevσ̄ev

〉〉

=

F
σ̄ (Γev)

(Γi Γ ) σ̄ev
|N − v Γi〉

∣
∣
∣
∣[1 0]

1
2
1Er, [v 0]j	; κΓ σ̄

〉〉

.

(D.5)

When N − v is even we simply have
∣
∣
∣
∣N − v A1〉|[1 0]

1
2
Er, [v 0]j	; κ Γ σ̄

〉〉

=
∣
∣
∣
∣N − v A1; [1 0]

1
2
Er, [v 0]j	; κΓ ; Γ σ̄

〉〉

N − v even,

since all CGC equal one. When N − v is odd Γi = Bi and
the states are obtained with the values of the CGC given
in Table 2. We note that the transformation (D.5) reduces
in all cases to a phase (no σ̄ summation).



F. Michelot and M. Rey: Effective Hamiltonian approach to doubly degenerate electronic states 385

D.4 Symmetry adapted states for other cases

For an active coordinate with symmetry B1 the operator
considered as dominant in Section 7.4.3 writes

s t̃
1,2B1(B1)
{11}

[1−1]E(1,2B1)[1−1]
s V(1,2 B1) = λ̃xSx Jx.

We know that within orientation I the symmetry adapted
electronic states are eigenstates of [1−1]E(1,2B1) = Sx:

Sx

∣
∣
∣
∣[1 0]

1
2
1Erσ

〉〉

=
1
2
(−1)σ+1

∣
∣
∣
∣[1 0]

1
2
1Erσ

〉〉

σ = 1, 2,

and that the rotated states ̂|[v 0]jm〉〉 given in equa-
tion (137) are eigenstates of Jx. The space of states is
again split into two subspaces H+ and H− associated re-
spectively with eigenvalues ±	/4 of SxJx. For the basis
vectors in H+ we set:

∣
∣
∣
∣[1 0]

1
2
1Er1

〉〉
̂

∣
∣
∣
∣[v 0]j

	

2

〉〉

= (+)ϕ̂+

∣
∣
∣
∣[1 0]

1
2
1Er2

〉〉
̂

∣
∣
∣
∣[v 0]j − 	

2

〉〉

= (+)ϕ̂−

and for those in H−
∣
∣
∣
∣[1 0]

1
2
1Er1

〉〉
̂

∣
∣
∣
∣[v 0]j − 	

2

〉〉

= (−)ϕ̂+

∣
∣
∣
∣[1 0]

1
2
1Er2

〉〉
̂

∣
∣
∣
∣[v 0]j

	

2

〉〉

= (−)ϕ̂−.

Under time reversal we have K(+)ϕ̂± = iv (+)ϕ̂± and
K(−)ϕ̂± = iv (−)ϕ̂±. The associated symmetry adapted
states are listed below in the form:

∣
∣
∣
∣[1 0]

1
2
Er, [v 0]j	; κ, Γσ

〉〉

,

with κ = ±1 associated with the eigenvalues ±	/4 of SxJx.

• v even (j integer)

|[1 0]12Er, [v 0]j	; +, Erσ〉〉 = ij (+)ϕ̂+

|[1 0]12Er, [v 0]j	; +, Er − σ〉〉 = ij (+)ϕ̂−
|[1 0]12Er, [v 0]j	;−, Erσ〉〉 = ij (−)ϕ̂+

|[1 0]12Er, [v 0]j	;−, Er − σ〉〉 = ij (−)ϕ̂−

(D.6)

where (σ,−σ) = (1, 2) for j+	/2 even and (σ,−σ) = (2, 1)
for j + 	/2 odd. In the special case 	 = 0 only states + or
− in equation (D.6) are retained.

• v odd (j half integer)
∣
∣
∣
∣[1 0]

1
2
Er, [v 0]j	; +Γ1

〉〉

=
ij√
2
((+)ϕ̂+ + (+)ϕ̂−)

∣
∣
∣
∣[1 0]

1
2
Er, [v 0]j	; +Γ2

〉〉

=
ij√
2
((+)ϕ̂+ − (+)ϕ̂−)

∣
∣
∣
∣[1 0]

1
2
Er, [v 0]j	;−Γ ′

1

〉〉

=
ij√
2
((−)ϕ̂+ + (−)ϕ̂−)

∣
∣
∣
∣[1 0]

1
2
Er, [v 0]j	;−Γ ′

2

〉〉

=
ij√
2
((−)ϕ̂+ − (−)ϕ̂+) (D.7)

with Γ1, Γ2, Γ
′
1, Γ

′
2 = B2, A2, A1B1 for j + 	/2 even and

Γ1, Γ2, Γ
′
1, Γ

′
2 = A1, B1, B2, A2 for j + 	/2 odd.

In a similar manner for an active coordinate with sym-
metry B2 the operator considered as dominant is

st̃
1,2B1(B2)
{11}

[1−1]E(1,2B2)[1−1]
s V(1,2 B2) = λ̃ySy Jy.

Within orientation III the symmetry adapted electronic
states are eigenstates of [1−1]E(1,2B2) = Sy:

Sy

∣
∣
∣
∣[1 0]

1
2
1Er ¯̄σ

〉〉

=
1
2
(−1)¯̄σ+1

∣
∣
∣
∣[1 0]

1
2
1Er ¯̄σ

〉〉

¯̄σ = 1, 2,

and the rotated states
̂
̂|[v 0]jm〉〉 given in equation (138)

are eigenstates of Jy. As previously the space of states
can be split into two subspaces H+ and H− associated
respectively with eigenvalues ±	/4 of Sy Jy. For the basis
vectors in H+ we set this time:

∣
∣
∣
∣[1 0]

1
2
1Er

¯̄1
〉〉 ̂

̂
∣
∣
∣
∣[v 0]j

	

2

〉〉

= (+) ̂̂ϕ+

∣
∣
∣
∣[1 0]

1
2
1Er

¯̄2
〉〉 ̂

̂
∣
∣
∣
∣[v 0]j − 	

2

〉〉

= (+) ̂̂ϕ−

and for those in H−

∣
∣
∣
∣[1 0]

1
2
1Er

¯̄1
〉〉 ̂

̂
∣
∣
∣
∣[v 0]j − 	

2

〉〉

= (−) ̂̂ϕ+

∣
∣
∣
∣[1 0]

1
2
1Er

¯̄2
〉〉 ̂

̂
∣
∣
∣
∣[v 0]j

	

2

〉〉

= (−) ̂̂ϕ−.

With the same techniques as previously one builds sym-
metry adapted states

∣
∣
∣
∣[1 0]

1
2
1Er, [v 0]j	; κ, Γ ¯̄σ

〉〉

,

the expressions of which can be deduced from those in
equations (D.6, D.7) with the substitutions

(±)ϕ̂± → (±) ̂̂ϕ±, σ̄ → ¯̄σ

and for the cases in equation (D.7) Γ1, Γ2, Γ ′
1, Γ

′
2 = B1, A2,

A1, B2 for j+	/2 even and Γ1, Γ2, Γ ′
1, Γ

′
2 = A1, B2, B1, A2

for j + 	/2 odd.
For both cases just treated inclusion of the bi mode

can be made with equation (D.5) with F coefficients in
the appropriate orientation.
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